

Program Report

95-P002-1

Long Term Resource Monitoring Program Procedures:

Fish Monitoring

This PDF file may appear different from the printed report
because of slight variations incurred by electronic transmission.
The substance of the report remains unchanged.

Long Term Resource Monitoring Program Procedures: Fish Monitoring

by
Steve Gutreuter, Randy Burkhardt, and K enneth Lubinski
National Biological Service
Environmental M anagement Technical Center
575 L ester A venue
Onalaska, W isconsin 54650

July 1995

The Environmental M anagement Technical Center issues LTRM P Program Reports to provide Long Term Resource M onitoring Program partners with programmatic documentation, procedures manuals, training manuals, and geospatial applications.

Cover graphic by Mi Ae Lipe-Butterbrodt

M ention of trade names or commercial products does not constitute endorsement or recommendation for use by the National Biological Service, U.S. Department of the Interior.

The National Biological Service . . . gathering, analyzing,
and sharing the biological information necessary to support the wise stewardship of the Nation's natural resources.

Preface

The Long Term Resource M onitoring Program (LTRMP) was authorized under the W ater Resources D evelopment A ct of 1986 (Public L aw 99-662) as an element of the U.S. Army Corps of Engineers' (Corps) Environmental M anagement Program. The original authorization for the LTRM P was for 10 years, starting in 1987. Authorization has since been extended for an additional 5 years (to 2002) by Section 405 of the W ater Resources Act of 1990 (Public Law 101-640).

The LTRMP is being implemented by the Environmental M anagement Technical Center, a National Biological Service Science Center, in cooperation with the five Upper Mississippi River System (UMRS) States of Illinois, Iowa, Minnesota, M issouri, and W isconsin. The Corps provides guidance and has overall Program responsibility. The mode of operation and respective roles of the agencies are outlined in a 1988 M emorandum of A greement.

The U M R S encompasses the commercially navigable reaches of the U pper M ississippi River, as well as the Illinois River and navigable portions of the K askaskia, Black, St. Croix, and M innesota Rivers. Congress has declared the UM RS to be both a nationally significant ecosystem and a nationally significant commercial navigation system. The mission of the LTRMP is to provide decision makers with information to maintain the U pper M ississippi River System as a sustainable large river ecosystem given its multipleuse character. The long-term goals of the Program are to understand the system, determine resource trends and impacts, develop management alternatives, manage information, and develop useful products.

Goal 2 of the LTRMP Operating Plan (USFWS 1992) is simply stated: Monitor Resource Change. Strategies for monitoring resource components are listed under this goal.

This report should be cited as:
Gutreuter, S., R. Burkhardt, and K. Lubinski. 1995. Long Term Resource M onitoring Program Procedures: Fish M onitoring. National Biological Service, Environmental M anagement Technical Center, Onalaska, W isconsin, July 1995. LTRM P 95-P002-1. 42 pp. + A ppendixes A-J

Contents

Page
Preface iii
Contents V
Tables viii
Figures ix

1. M onitoring Rationale 1
2. Acknowledgments 1
3. A ttributes 2
3.1 Community Structure 2
3.1.1 D efinition and Importance 2
3.1.2 Relative A bundance 2
3.1.3 Species Richness 3
3.2 Population Structure 3
3.2.1 Definition and Importance 3
3.2.2 Size Distribution 4
4. Description of Sampling M ethods and Gears 4
4.1 Electrofishing 4
4.2 Hoop Netting 7
4.3 Seining 9
4.4 Fyke Netting 10
4.5 M ini Fyke Netting 12
4.6 Trawling 13
4.7 Gill Netting 13
4.8 Trammel Netting 14
5. Sampling Requirements 14
5.1 Sampling Design 14
5.1.1 General A spects 14
5.1.2 LTRM P Fish Sampling Strata 15
5.1.3 Allocation of Sampling Effort 16
5.1.4 Seasonal Distribution of Fish Collections 18
5.1.5 Random Selection of Collection Sites 18
5.1.6 L ocation of Collection Sites During Sampling Operations 18
5.2 Fish Identification and M easurement 19
5.2.1 General Information 19
5.2.2 Identifying, M easuring, W eighing, and Enumerating Fish 19
5.2.3 Subsampling 20
5.2.4 M easurements from K ey Species During the Last Time Period 22
5.2.5 Collecting Specialized D ata: Tagging, A ging Structures, and Food Use 22
5.2.6 M easurements from All Species 23
5.2.7 Training 23
5.2.8 Expert Identification and Reference Collections 23
5.2.9 Investigating Fish Kills 23
6. Fish D ata Sheets and Coding Instructions 24
6.1 Overview 24
6.2 Coding Instructions 24
6.2.1 General 24
6.2.2 Fish Collection Sheet 25
6.2.3 Fish M easurement Sheet 32
6.3 Tips for M easuring and Recording M easurements 38
6.3.1 General 38
6.3.2 Recording Individual M easurements W ithout Regard to Subsampling Quotas 38
6.3.3 Recording Length Group Counts 38
6.3.4 Recording Subsampled Individual M easurements in the Quota M ea- surement Scheme 38
7. QA/QC Procedures for Submission of Data for Entry 39
7.1 Overview 39
7.2 Pre-Submission QA/QC Procedures 39
8. References 40
A ppendix A A-1
Long Term Resource M onitoring Program Electrofishing Boats A-1
A ppendix B B-1
M apping Electrical Fields Surrounding Long Term Resource M onitoring Program Electrofishing Boats B-1
A ppendix C C-1
Fish Collection Sheet C-1
A ppendix D D-1
Fish M easurement Sheet D-1
A ppendix E E-1
Placement of Serially Connected Tandem Hoop N ets Prior to 1993 E-1
A ppendix F F-1
Original Long Term Resource M onitoring Program Fish M onitoring Design F-1
A ppendix G G-1
References to be Used as Keys in the Identification of Fish G-1
A ppendix H H-1
Long Term Resource M onitoring Program List of Fishes and Fish Codes H-1
A ppendix I |-1
Fish Identification Expert I-1
A ppendix J J-1
Fish D ata Sheet Log J-1

Tables

Page
Table 1. Long Term Resource M onitoring Program fish sampling gear codes 12
Table 2. General gear effort allocation guidelines 17
Table 3. Fish health and pathogen codes for Long Term Resource M onitoring Program fisheries component 20
Table 4. Sampling Summary Codes, which range from 1 to 8 and document the success or failure of a sampling attempt 21
Table A-1. Parts list for Long Term Resource M onitoring Program electrofishing boats, excluding major components A-1
Table A-2. LTRM P standardized electrofishing power settings for various water conductivities and temperatures A-2
Table F-1. A nnual fish collections, 1990-1992, and units of effort for one collec-tion period per habitat by pool position and vegetation condition F-4
Table H-1. Long Term Resource M onitoring Program list of fishes and fish codesarranged alphabetically by common nameH-1
Table H-2. Long Term Resource M onitoring Program (LTRM P) list of fish codes and fishes arranged alphabetically by LTRM P code H-8
Table H-3. List of obsolete Long Term Resource M onitoring Program fish codes H-14
Table H-4. Long Term Resource M onitoring Program list of fishes, arranged phylogenetically by family, then alphabetically by genus and species H-15

Figures

Page
Figure 1. Boat maneuvers during electrofishing in various habitat types 6
Figure 2. Placement of large and small hoop nets along unstructured shoreline and downstream from wing dams8

Figure 3. Placement of fyke and mini fyke nets in various habitats 11
Figure A-1. External configuration of a Long Term Resource M onitoring Program pulsed-DC electrofishing boat

Figure A-2. Circuit diagram for a Long Term Resource M onitoring Program pulsed-DC electrofishing boat

Figure A-3. Terminal block strip and toggle switch configuration for a Long Term Resource M onitoring Program electrofishing boat

Figure B-1. A pproximate shape of the effective ($0.1 \leq \mathrm{V} / \mathrm{cm} \leq 1.0$) electrical field around a Long Term Resource M onitoring Program electrofishing boat operating at the $3,000-\mathrm{W}$ power goal

Figure F-1. Spatial replication within sampling sites in the original Long Term Resource M onitoring Program fixed-site sampling design.F-2

1. Monitoring Rationale

Fishes are one of the most diverse and abundant natural resources of the Upper M ississippi River System (UM RS) (C arlander 1954; Rasmussen 1979; V an V ooren 1983; Fremling et al. 1989). Several features contribute to the great amount of interest fishes receive from the general public, fishery managers, and aquatic ecologists:
a. UMRS fishes support multimillion-dollar commercial and sport fisheries.
b. Fishes respond to a variety of hydrologic, water quality, and habitat variables.
c. Scientists and fishery managers recognize fish communities as an integrative index to a complex set of physical and biological conditions on the UMRS; that is, fish are indicators of the biotic integrity of the UMRS. In addition, impacts of sedimentation, increased navigation, and altered water levels in the UM RS are often perceived by the general public in terms of changes in the fish community or fish habitat.
d. Recent research demonstrates that fishes often have major controlling effects on other organisms, including vegetation, aquatic macroinvertebrates, zooplankton, and phytoplankton, and even on nutrient cycling and sediment resuspension (N orthcote 1988). Therefore, information on fish is often required to understand other organisms and some physical/chemical processes.

The value of fishery data collected using standardized methods was clearly recognized in the planning documents that preceded the Environmental M anagement Program (Jackson et al. 1981), and there have been few disagreements about including fish as a major resource component for trend analysis. The following procedures address these concerns by standardizing collections based on commonly accepted methods and stratifying collections over space, season, and flow.

The basic unit of measurement related to the fishery component is the fish collection. A fish collection is defined as all of the fishes collected during a single deployment of a sampling gear at a defined place and time.

Trend analysis under the L ong Term Resource M onitoring Program (LTRMP) emphasizes two attributes of the UMRS fishery resource: community and population structure. Sampling methods for these attributes are equivalent, but hypotheses related to the attributes require different analytical approaches; therefore, they are discussed in separate sections.

2. Acknowledgments

This document is the result of contributions of ideas from many individuals. It incorporates substantial material from the earliest LTRM P Procedures M anual (Burkhardt et al. 1988). The LTRM P planned for self-evaluation and change early in the program. This document reflects changes and refinements to the original LTRM P fish monitoring program identified through experience and analysis of preliminary data. A doption of these changes was the result of group efforts within the LTRMP. We particularly thank the many LTRM P Field Station staff who have worked tirelessly for the success of this program: M innesota Department of N atural Resources - Walter Popp and M ark Stopyro; W isconsin Department of N atural

Resources - Terry Dukerschein, Andy Bartels, and Steve Skemp; Iowa Department of Natural Resources-Russ Gent, Mike Griffin, and Scott Gritters; Illinois Natural History Survey - Doug Blodgett, Chuck Theiling, Paul Raibley, M att O'H ara, K evin Irons, Fred Cronin, Dirk Soergel, and Rob M aher; and M issouri Department of Conservation - Bob H rabik, M ike Petersen, and Dave Herzog. W e also thank all current and former members of the LTRMP Analysis Team, M innesota Department of Natural Resources, W isconsin Department of N atural Resources, Iowa Department of N atural Resources, Illinois D epartment of Conservation, Illinois N atural History Survey, M issouri D epartment of Conservation, U.S. A rmy Corps of Engineers, and the U.S. Fish and Wildlife Service.

3. Attributes

3.1 Community Structure

3.1.1 Definition and Importance

Fish community structure refers to the relative abundance of fishes of each species within a multispecies assemblage of fishes (Carline 1986). Relative abundance is traditionally measured by catch in numbers per unit of sampling effort, but measures based on weight are also commonly used. A "fish community" theoretically includes all of the fish that use a defined area over a given period of time. The best overall method for measuring fish community structure is the one that is most effective (samples the largest number of specimens) and least selective (captures species in proportion to their occurrence in the sampled area). Given commonly available levels of time and personnel, no single method routinely satisfies both criteria (Starrett and Barnikol 1955; F unk 1957; Hayes 1983; Hubert 1983). For this reason, the trend analysis procedure for fish community structure in a given aquatic area includes use of several sampling gears. Comparisons of collections between habitat categories are made with caution and with the full understanding that results are probably affected by habitat-related differences in gear efficiency.

3.1.2 Relative Abundance

R elative abundance can be assessed for all specimens regardless of size or it can be assessed separately for adults and young-of-the-year by using appropriate length categories defined for each fish species. Relative abundance is measured in units appropriate to the method used, and it is always paired with a taxonomic identification code applicable to the taxon or group it describes.

Relative abundance is one of the most common variables used by biologists to assess community structure. It is called relative abundance to stress the fact that virtually every sampling method is somewhat selective and therefore produces a biased view of true abundance. In trend analysis, this bias is minimized by the development of standardized methods and reliance on multiple sampling gears.

Species relative abundances often are grouped to demonstrate trends in the sport or commercial fishery or in functional (e.g., reproductive, feeding, habitat) guilds. For instance, Pitlo (1987), in a synthesis of UM RS standing stock estimates, indicated that "rough" and "forage" fish species commonly made up approximately 69% of the backwater fish community. "Panfish," predators, "game fish," and catfishes
comprised $14 \%, 6 \%, 6 \%$, and 5%, respectively, of this community. Percentages of these fish groups in channel border habitats, as determined by sampling using Primacord, were "rough" fish, 79; catfishes, 16; "forage fish," 4; combined "panfish," "game" fish, and predators, < 1.

Certain fish species in the UM RS were tentatively described at the outset of the Long Term Resource M onitoring Program as being adversely affected by high or prolonged levels of suspended sediment and habitat changes associated with high sedimentation rates. Sediment-associated physical factors can inhibit the reproduction, growth, behavior, or competitive ability of these species directly or indirectly via impacts on aquatic vegetation. We refer to these species as being "sediment-sensitive." A nother categorization that may partially overlap sediment sensitivity is degree of dependence on backwaters. Some species require backwaters, especially to avoid the extreme physiological stress imposed by the combination of current and very low temperatures in channels during winter.

3.1.3 Species Richness

Species richness refers to the total number of species taken in a collection or during a defined unit of effort. It does not include hybrids or higher taxonomic categories that may be listed on data sheets (e.g., carp x goldfish hybrid, Ictiobus sp.). Species richness is a component of the overall diversity of the fish community. Because the sample species richness increases with increasing sampling effort, comparison of species richness estimates requires either constant sampling effort or formal estimation methods. Estimation of species richness is an important but difficult (Bunge and Fitzpatrick 1993) task.

3.2 Population Structure

3.2.1 Definition and Importance

Population structure refers to the distribution of individuals of a single species among size or age groups. Fishery biologists often recommend that analyses of population structure be based on large numbers (2200) of specimens. D ata on population structure are obtained from routine LTRM P sampling efforts.

The target fish species for annual population structure evaluations are black crappie (Pomoxis nigromaculatus), channel catfish (Ictalurus punctatus), highfin carpsucker (Carpiodes velifer), and sauger (Stizostedion canadense). These species were selected for evaluation in the LTRM P because they are suspected of being susceptible to impacts associated with the three resource problems addressed by the program: (1) they represent different feeding, habitat-use, and reproductive guilds; (2) they are distributed throughout the UM RS at densities that enable reliable population structure evaluations; and (3) most are important components of either the UM RS sport or commercial fisheries.

Standard LTRM P collection methods often yield enough individuals of other closely associated species (e.g., northern pike[Esox lucius], walleye [Stizostedion vitreum], and white crappie [Pomoxis annularis]) to permit additional population structure evaluations. Such evaluations are encouraged by the Environmental M anagement Technical Center (EM TC).

3.2.2 Size Distribution

The size distribution for a given species is the vector (list) of the numbers of specimens taken in a collection or a unit of effort that fall into selected size categories. The size distribution of a species is a valuable index to a variety of population characteristics, including growth, recruitment, and mortality rates.

Evaluation of size distribution requires the establishment of standard total length categories (TLCs). D uring measurement, specimens are categorized based on their recorded total length (TL ; see Section 5.2, Fish Identification and M easurement). Standard TLCs for size groups $\leq 400 \mathrm{~mm} \mathrm{TL}$ are 1 cm . TLCs for size groups $\geq 400 \mathrm{~mm}$ TL are 2 cm . TLCs are labeled by their lower length boundary. For instance, fish in TLC 9 are between 90 and 99 mm TL, and fish in TLC 40 are between 400 and 420 mm TL .

4. Description of Sampling Methods and Gears

4.1 Electrofishing

Standardized electrofishing is conducted in aquatic areas where depth ranges from approximately 0.5 to 3.0 m . The standard unit of reporting electrofishing effort is time measured in hours, but electro-fishing effort is recorded in minutes.

To maximize standardization among electrofishing collections, the boats and shocking equipment used by each field crew have been assembled by field station and EM TC staff according to the specifications given below and in Appendix A. Electrofishing boats are $5.5-\mathrm{m}(18-\mathrm{ft})$ flatbottomed aluminum boats. They are powered by 45 - to 110 -hp outboard motors and should be equipped with a small backup motor for safety and for running in shallow water.

The power supply is a $5-\mathrm{kW}$ or higher capacity AC generator (M odels MAB5036E-2 or GGB5562ERC, T\&J M anufacturing, Oshkosh, WI, or equivalent) equipped with a manual remote start/stop switch for safety. With attached circuitry, the generator is capable of producing AC, DC, and pulsed-DC output. The two forward booms hold anodes located $2.44 \mathrm{~m}(8 \mathrm{ft})$ from the front of the boat and spaced 3.05 m (10 ft) apart. Each anode consists of a stainless steel circular ring $0.91 \mathrm{~m}(3 \mathrm{ft})$ in diameter with four 30cm (12-inch)-long, $2.54-\mathrm{cm}$ (1 -inch) outer-diameter stainless steel droppers attached. The droppers are attached to the ring with $35.6-\mathrm{cm}$ (14-inch) lengths of wire so that the anode dropper units have a total length of 66 cm (26 inches). The boat hull serves as the cathode. M etering equipment permits the monitoring of output voltage and amperage. Two independent "deadman" safety foot switches are located on the front deck near the dip-netting stations, and two hand-operated safety switches are located at the rear of each dip-netting station. A fourth safety switch is located on the control box console, and a fifth switch is attached to the driver. Forward-mounted floodlights permit night sampling.

Diagnostic checking must be conducted annually and after service and replacement of any electrical components. This procedure includes inspection of all electrical contacts, excluding circuits internal to the control box and generator, for corrosion. The contact points between the stainless steel hoops and droppers of the anodes must be checked monthly. It is also desirable to map the electrical field annually. A ppendix B contains specifications for the electrical field.

A pulsed-DC field is used for relative abundance samples because many fish caught in the electrical field are entrained to the anodes by an electrotactic physiological response (Reynolds 1983). In theory, this electrotactic response should reduce sampling variability caused by differences in visibility of fish caused by varying turbidity. The primary objective is to create an electromagnetic field that induces a constant power drop across a fixed length of fish tissue under different conditions of water temperature and conductivity (Burkhardt and Gutreuter 1995). For this reason, voltage and amperage are adjusted to achieve a uniform base power of $3,000 \mathrm{~W}$. This adjustment is accomplished using LTRM P standardized electrofishing power settings (Appendix A). Power goals (W) are listed for various combinations of conductivity ($\mu \mathrm{S} / \mathrm{cm}$) and temperature (${ }^{\circ} \mathrm{C}$). Pulse frequency is set to 60 Hz and duty-cycle is set to 25%. This configuration is effective for many species over a broad range of water quality conditions. Note: Because power output affects catch rates of fishes differently, it is critical that power output from all LTRMP electrofishing samples is as close as possible to the power goal and does not deviate from the power goal by more than 20%.

The electrofishing boat is operated by a pilot and two persons operating dip nets. Because electrofishing requires potentially hazardous equipment, special qualifications are required of crew members. The designated Crew Leader is required to pass an EM TC fisheries training course that includes a session on electrofishing techniques and safety and a course in cardiopulmonary resuscitation. All crew members should pass this training course, when offered. The Fisheries Special ist or Crew L eader is responsible for providing interim training for crew members who have not been able to take the LTRM P training course. All crew members also are required to have passed a course in cardiopulmonary resuscitation at the earliest possible opportunity.

Dip netters use $30-\mathrm{cm}$ (12-inch)-deep, 3 -mm (1/8-inch)-diameter mesh dip nets (M odel ELECTRO REGULAR D, Duraframe Dipnet, Viola, WI) on 2.4-m (8 -ft) fiberglass handles. Dip netters collect each fish as it appears, regardless of size or species. Fish are placed in a holding box until the run is terminated. Unusual species or specimens that are observed but not collected during the run are noted by the crew and reported as comments on the data sheet. H owever, these observations are not entered into the collection data set.

Beginning with 1993 and continuing to the present, daytime electrofishing is conducted from 1 h after sunrise to 1 h before sunset. Night electrofishing is conducted from 1 h after sunset to 1 h before sunrise.
Note: Prior to 1993, daytime electrofishing was conducted between the hours of 0700 and 1130 CST, and nighttime electrofishing was conducted from 30 min after sunset to 30 min before sunrise.

Before starting an electrofishing run, the crew reviews the description of the area to be shocked and the collection site boundaries. Surface conductivity and water temperature are measured and used to identify the proper electrical settings. Individual electrofishing runs have a duration of 15 min and are approximately $200 \mathrm{~m}(220 \mathrm{yd})$ long and $30 \mathrm{~m}(33 \mathrm{yd})$ wide. The pilot uses a timer to measure the actual time required for each collection. During the run, the pilot operates the boat at a speed and along a path such that 15 min of effort allows coverage of the approximate sampling area. Banks, submerged logs, and any other structure within the sampling area are shocked thoroughly until they no longer yield fish. The pilot is free to modify the forward and backward movement of the boat to permit the most effective collection of fish only to the extent that such movement does not interfere with the objective of obtaining 100% area coverage with a single 15 -min pass. Chase boats may be used in high water velocity conditions to recover incapacitated fish. Figure 1 illustrates how to electrofish in various habitats.

$$
\begin{aligned}
& 1200 \text { meters channel gorder unstructured }
\end{aligned}
$$

$$
\begin{aligned}
& T \\
& \text { FLOW } \Rightarrow
\end{aligned}
$$

Figure 1. Boat maneuvers during electrofishing in various habitat types

A ccessory physical and water quality measurements made near the center of the sampling site before electrofishing are water temperature, current velocity (20 cm below the water surface), average water depth in the sampled area, Secchi transparency (daytime only), conductivity, and qualitative appraisals of substrate composition, vegetation, and other proximate structures.

4.2 Hoop Netting

An LTRM P hoop net set consists of paired deployment of a large baited hoop net and a small baited hoop net. The standard unit of hoop netting effort is the net-day, where days are 24.0 h and each hoop net cab counts as one net. Therefore, a 48-h deployment of a pair of hoop nets produces an effort of 4.0 net-days.

Large hoop nets (M odel H25F, M emphis N et and Twine, Co., Inc., M emphis, TN, or exact equivalent) have seven fiberglass hoops and are $4.8 \mathrm{~m}(16 \mathrm{ft})$ long. The first hoop is $1.2 \mathrm{~m}(4 \mathrm{ft})$ in diameter; successive hoops decrease incrementally in diameter by 2.5 cm (1 inch) toward the cod end of the net. The \#8 nylon netting, $3.7-\mathrm{cm}$ (1.5 -inch)-diameter bar mesh, is protected with a black asphalt-type coating (N etcoat, M emphis N et and Twine Co., Inc. or equivalent). Two finger-style throats are attached, one to the second hoop and one to the fourth hoop. The throat on the second hoop is 15.5 meshes long and has an aperture circumference of 35 meshes. The throat on the fourth hoop is 13.5 meshes long and has an aperture circumference of 26 meshes. The cod end has a $2.4-\mathrm{m}(8-\mathrm{ft})$ long drawstring made of $0.63-\mathrm{cm}(0.25$-inch)-diameter asphalt-coated nylon cord.

Small hoop nets (specially ordered from M emphis N et and Twine Co., Inc. or exact equivalent) have seven fiberglass hoops and are $3 \mathrm{~m}(10 \mathrm{ft})$ long. The first hoop is $0.6 \mathrm{~m}(2 \mathrm{ft})$ in diameter; successive hoops decrease incrementally in diameter by 2.5 cm (1 inch) toward the cod end of the net. The nets are constructed from \#9 nylon netting with $1.8-\mathrm{cm}$ (0.75 -inch)-diameter bar mesh and are protected with a black asphalt-type coating (N etcoat, M emphis N et and Twine Co., Inc. or equivalent). Two finger-style throats are attached to the second and fourth hoops. The throat on the second hoop is 14 meshes long and has an aperture circumference of 28 meshes. The throat on the fourth hoop is 12.5 meshes long and has an aperture circumference of 22 meshes.

Both nets are baited with 3 kg of soybean cake, 1 kg placed in a $1.9-\mathrm{cm}$ (0.75 -inch)-diameter mesh bag attached to the rear of the net, and 2 kg placed loosely in the rear of the net (where current velocity is high this bag may consist of $0.6-\mathrm{cm}$ [0.25 -inch] mesh and all bait may be placed in this bag).

Hoop nets are deployed in pairs, with both members placed in the same habitat stratum. Hoop nets are fished with the open end of the net facing downstream. Depth must be sufficient to submerge all throats of hoop nets.

Beginning in 1993 and continuing to the present, the two hoop nets are deployed in parallel sets, with the smaller net nearer shore (Fig. 2). The nets do not have to be placed adjacent to each other but may be displaced longitudinally when doing so will help satisfy depth requirements. Hoop nets may be deployed in sites where depth is sufficient to submerge the throats of nets. Each hoop net is anchored using a $15-61-\mathrm{m}(50-200-\mathrm{ft})$-long lead rope tied to a stake or a net anchor, whichever works best given substrate composition, depth, and velocity conditions at the sample location. W herever current is sufficient to hold the nets open, the lower end is not bridled. Where current speed is insufficient to hold a hoop net open, a $15-\mathrm{m}$ ($50-\mathrm{ft}$)-long line is tied to a two-strand bridle at the mouth of the net and is tied to an anchor or stake to hold the net open. A visible float and rope may be attached to the mouth of the

Figure 2. Placement of large and small hoop nets along unstructured shoreline and downstream from wing dams
net to aid retrieval. However, this float line must not lift the net from the bottom. At wing dam sites, hoop nets (cabs) are set within 100 m below the wing dam and within the scour hole (if present). The large net is placed near the tip of the wing dam and the small net is placed approximately halfway between the shoreline and the tip of the wing dam. Separate Collection and M easurement Sheets (A ppendixes C and D) are completed for each net.

Note: Prior to 1993, hoop nets were deployed differently; the two nets were connected in series, and the pair was treated entirely as a single net (Appendix E). The larger hoop net was positioned upstream of the smaller hoop net. It was anchored with a $15-\mathrm{m}(50-\mathrm{ft})$ rope tied to a stob or a net anchor, whichever worked best given substrate composition, depth, and velocity conditions at the sample location. A $15-\mathrm{m}$ ($50-\mathrm{ft}$) rope connected a two-strand bridle at the mouth of the larger hoop net to the tail of the smaller hoop net. A $15-\mathrm{m}$ ($50-\mathrm{ft})$-long line was tied to a two-strand bridle at the mouth of the small hoop net to anchor the downstream end of the net if current velocity was insufficient to hold the nets open. Where current was sufficient to hold the nets open, the lower end was usually not bridled. Catches were not recorded separately for each net prior to 1993. This
method of deployment was abandoned in 1993 because results of a study sponsored by the Open River Field Station indicated this set was inferior to each of several detached deployments.

A standard net-set has a duration of 48 h . The net is retrieved by towing a grappling hook to snare the lead line or by lifting the optional float attached to the mouth of the net.

A ccessory physical and water quality measurements made near the center of the sampling site when the nets are set are water temperature, current velocity (20 cm below the water surface), depth of net set (for each net), Secchi transparency (daytime only), and qualitative appraisals of substrate composition, vegetation, and other proximate structures.

4.3 Seining

Seining is used to collect small fishes in shallow areas. The standard unit of seining effort is the net haul. The time duration of seining effort is not recorded.

Seines are made of "Ace"-type nylon netting with a mesh size of 3 mm ($1 / 8 \mathrm{inch}$). Seines are 10.7 m $(35 \mathrm{ft})$ long and $1.8 \mathrm{~m}(6 \mathrm{ft})$ high, with a square bag measuring $0.9-\mathrm{m}(3-\mathrm{ft})$ on each side located at the center of the net. The O pen River Field Station uses a seine having a mudline and $5-\mathrm{mm}$ ($3 / 16$-inch) mesh to accommodate soft sediments and high current velocities. Seines may be coated with a preservative as long as the mesh remains flexible and is not plugged; preservatives may have to be thinned using a suitable solvent.

Seines are fished along banks in water not exceeding $1.2 \mathrm{~m}(4 \mathrm{ft})$ in depth. One end (the downstream end in flowing water habitats) of the seine is anchored to the bank; the other end is deployed perpendicular to the bank and is swept, fully extended, around a 90 -degree arc (quarter haul) to the shoreline in the downstream direction. This motion will sweep a quadrant approximately 4.6 to $5.2 \mathrm{~m}(15$ to 17 ft) in radius. The seine haul is made slowly to ensure that the lead line remains in contact with the river bottom and that the float line remains on the surface of the water at all times.

Seining at a site consists of a minimum of two hauls, with the first haul the farthest downstream and the last haul the farthest upstream. Optionally, as many as four hauls may be made at one site. Data from each haul are recorded separately; see Section 6.2.3 for instructions.

In areas where snags are anticipated, a third person patrols the back of the seine, clears the lead line as necessary to keep it in contact with the bottom substrate, and attempts to minimize disturbance to fish in front of the seine. If the haul is interrupted by two or more snags that in the judgment of the Crew Leader require an excessive amount of clearing time, the seine haul is terminated and a new haul is initiated in undisturbed water.

A ccessory physical and water quality measurements made near the center of the sampling site area before seining are Secchi transparency, water temperature, current velocity (20 cm below the water surface), depth, and qualitative appraisals of substrate composition, vegetation, and other proximate structures.

4.4 Fyke Netting

Fyke nets are deployed with leads fully extended and without respect to maximum depth in areas where depth is at least sufficient to submerge the throats of nets, with two exceptions. The first exception is where bed slope along the length of the lead is steeper than approximately 30 degrees (i.e., where the cabs of shoreline sets would lie in depths greater than approximately $7.6 \mathrm{~m}[25 \mathrm{ft}]$). The second exception is in tailwaters where full extension of a lead would put the cab in an eddy current that could roll the net. Where either exception occurs, leads may be shortened to no less than 40% of their extended length (i.e., no less than 6.1 m or 20 ft) to place the top of the cab at or above the water surface. If this minimum lead length is not sufficient to remedy either exception, an alternate sampling site must be used. When leads are shortened, a Summary Code value of 6 is recorded for otherwise normally completed samples. The leads are extended from the bank, a densely vegetated "edge," or the lead of another fyke net (paired off-shore deployment). The standard unit of fyke netting effort is the net-day, where a day is 24.0 h and each cab counts as one net. Thus, a tandem set (see below) deployed for 27 h is an effort of 2.25 net-days.

The LTR M P uses W isconsin-type fyke nets (trap nets) that contain three sections: the lead, the frame, and the cab. All netting material is \#12 nylon, $1.8-\mathrm{cm}$ (0.75 -inch)-diameter bar mesh, with a black asphalt-type coating (Netcoat, M emphis Net and Twine Co., Inc., or equivalent). The lead is 15 m (50 ft) long and $1.3 \mathrm{~m}(4.5 \mathrm{ft})$ high. The frame and the cab are covered with nylon mesh. Together, the frame and the cab are $6 \mathrm{~m}(20 \mathrm{ft})$ long when fully extended. The frame section is formed by two rectangular spring-steel ($6.3-\mathrm{mm}$ [0.25 -inch] black-oil-tempered rod) frames that are $0.9 \mathrm{~m}(3 \mathrm{ft})$ high and 1.8 m (6 ft) wide and have $0.9-\mathrm{m}$ high vertical crosspieces in the centers. Two mesh wings extend from the sides of the first frame toward the middle of the second frame such that there is a $5.1-\mathrm{cm}$ ($2-\mathrm{inch}$) vertical gap between each wing and an extension of the lead that is tied betw een the vertical crosspieces and bisects the frame section. The cab is constructed of six 0.9-m (3-ft)-diameter spring-steel hoops. Two throats are attached to the first (from the frame) and third hoops. The square-style throat on the first hoop is 20 meshes long and has an aperture circumference of 40 meshes. The crow-foot throat on the third hoop is 28 meshes long and has an aperture circumference of 32 meshes. The cod end has a $2.4-\mathrm{m}(8-\mathrm{ft})$-long drawstring made of $6.3-\mathrm{mm}$ (0.25 -inch)-diameter asphalt-coated nylon cord.

In nonvegetated backwater and impounded habitats with open shorelines, fyke nets are fished with the lead anchored to shore or other structure in low velocity, shallow water habitats. The net and lead are positioned perpendicular to shore (Fig. 3).

In densely vegetated backwater contiguous and impounded habitats where vegetation creates a false or pseudo-shoreline, fyke nets are fished perpendicular to the vegetation bed (Fig. 3). The lead must be set $1 \mathrm{~m}(3.2 \mathrm{ft})$ inside the outer edge of the weed bed.

In offshore impounded or backwater sites, two fyke nets are fished end-to-end (tandem set), with the leads tied together (Fig. 3). The fyke nets are anchored at both ends in low velocity, shallow water habitat. The end-to-end fyke net sets require a different gear code than traditional sets (Table 1).

A ccessory physical and water quality measurements made near the cab mouth when the net is set are water temperature, current velocity (20 cm below the water surface), depth, Secchi transparency, and qualitative appraisals of substrate composition, vegetation, and other proximate structures.

Figure 3. Placement of fyke and mini fyke nets in various habitats

Table 1. L ong Term Resource M onitoring Program fish sampling gear codes

Code	Gear type
D	Day electrofishing
N	Night electrofishing
F	Fyke net
X	Tandem fyke nets
M	M ini fyke net
Y	Tandem mini fyke net
GL	Gill net - set parallel to shoreline (experimental option)
GR	Gill net - set perpendicular to shoreline (experimental option)
H	Small hoop net
HS	Large hoop net
HL	Tandem hoop nets for population sampling (obsolete)
P	Seine net
S	Seine net pulled by boat (experimental and obsolete
B*	Trawl
T	Trammel net, anchored set
TA	Trammel net, floating and drifting
TD	

*Seine pulled by boat over soft sediments or offshore. This method was used experimentally and is obsolete.

4.5 Mini Fyke Netting

In tailwater border aquatic areas, mini fyke nets are set so that the tops of the cabs are at or above the water surface. To achieve such placement in tailwater borders, leads may be shortened to no less than 1.8 $\mathrm{m}(6 \mathrm{ft})$. In all aquatic areas other than tailwater borders, mini fyke nets are deployed according to the criteria for extension of leads used for fyke nets (see Section 4.4). Where shortening of leads on mini fyke nets is permitted, these leads may be shortened to no less than $1.8 \mathrm{~m}(6 \mathrm{ft})$. The standard effort unit is as per fyke nets (see Section 4.4).

The LTRMP uses W isconsin-type mini fyke nets (trap nets) that contain three sections: the lead, the frame, and the cab. All netting material is $3-\mathrm{mm}(0.125-\mathrm{inch})$ "A ce"-type nylon mesh coated with green latex net dip. The lead is $4.5 \mathrm{~m}(15 \mathrm{ft})$ long and $0.6 \mathrm{~m}(2 \mathrm{ft})$ high. The frame and cab are covered with
nylon mesh. Together the frame and the cab are $3 \mathrm{~m}(10 \mathrm{ft})$ long when fully extended. The frame section is formed by two rectangular spring-steel ($0.63-\mathrm{cm}$ [0.25 -inch] black-oil-tempered rod) frames that are 0.6 $\mathrm{m}(2 \mathrm{ft})$ high and $1.2 \mathrm{~m}(4 \mathrm{ft})$ wide. Two mesh wings extend from the sides of the first frame toward the middle of the second frame so that there is a $5.1-\mathrm{cm}$ (2-inch) vertical gap between each wing and an extension of the lead that bisects the frames. The cab is constructed of two $0.6-\mathrm{m}(2-\mathrm{ft})$-diameter springsteel hoops. One throat is attached to the first (from the frame) hoop and has an aperture diameter of 5 cm (2 inch) that is fixed using a stainless-steel ring. The cod end has a $1.8-\mathrm{m}$ (6 - ft)-long drawstring made of 4.4 - mm (0.187 -inch)-diameter asphalt-coated nylon cord.

The same procedures used for setting the large fyke nets apply to mini fyke nets (see Section 4.4). M ini fyke nets are used in backwater, channel border, side channel, and impounded habitats. Samples collected using mini fyke nets require a different gear code than regular fyke nets (Table 1). Accessory measurements are as per fyke nets.

4.6 Traw ling

Trawling is conducted at permanently fixed sampling sites in tailwater zones and unstructured channel borders. The LTRMP trawls primarily collect small fishes. The standard unit of trawling effort is the 350-m-long haul.

Two-seam, $4.8-\mathrm{m}(16-\mathrm{ft})$-wide and $4.5-\mathrm{m}$ ($15-\mathrm{ft}$)-long slingshot balloon trawls (TRL16BC, M emphis N et and Twine Co., Inc., or equivalent) are used. The body of the trawl is made of \#9 nylon with $18-\mathrm{mm}$ (0.75 -inch)-diameter stretch mesh. The bag of the trawl is made of \#18 nylon with 18 -mm (0.75 -inch)diameter stretch mesh. The bag contains a $1.8-\mathrm{m}(6-\mathrm{ft})$ liner consisting of $3-\mathrm{mm}(0.125$-inch) -diameter mesh. Floats are spaced every $0.91 \mathrm{~m}(3 \mathrm{ft})$ along the top line and $4.8-\mathrm{mm}(0.1875-\mathrm{inch})$ chain is tied to the bottom line. The trawl is operated with $37-\mathrm{cm}$-high by $75-\mathrm{cm}$-long ($15-\mathrm{x} 30$-inch) otter boards (M emphis Net and Twine BD2 or equivalent) pulled with 30-m (100-ft) tow lines.

Trawls are made in the downstream direction at a speed that keeps the lead line of the net in close contact with the river bottom. Nominal trawl lengths are $350 \mathrm{~m}(1,148 \mathrm{ft})$. The amount of time required to cover this distance is reported as sample time in minutes.

Trawling at a site consists of a minimum of six hauls if the site is in main or side channel border areas and four hauls if the site is in a tailwater zone. Data from each haul are recorded separately; see Section 6.2.3 for recording instructions.

Accessory physical and water quality measurements made before trawling are water temperature, current velocity (20 cm below the water surface), depth, Secchi transparency, and qualitative appraisals of substrate composition and other proximate structures.

4.7 Gill Netting

Beginning in 1993, gill nets are an optional experimental sampling gear. This option was included to improve monitoring capabilities for some large riverine species. The standard unit of gill netting effort is the net-day, where a day is 24 h .

Gill nets are $91.44 \mathrm{~m}(300 \mathrm{ft})$ long and consist of four $22.86-\mathrm{m}(75-\mathrm{ft})$ panels of monofilament mesh. The panels are $2.44 \mathrm{~m}(8 \mathrm{ft})$ deep. Each panel consists of a different size mesh. M esh sizes are 10.2, $15.2,20.3$, and $25.4 \mathrm{~cm}(4,6,8$, and 10 inch$)$ stretch measure. The $10.2-$ and $15.2-\mathrm{cm}$ (4- and 6 -inch) mesh is woven from \#8 ($9.07-\mathrm{kg}$ [20-lb] test) transparent nylon monofilament, and the other meshes are woven from \#12 (13.61-kg [30-lb] test) transparent nylon monofilament. The top line consists of floating foam core rope and the bottom line is $13.61-\mathrm{kg}(30-\mathrm{lb})$ lead core rope. Additional lead may be added to the lead line as needed to sink gill nets.

Gill nets may be set either perpendicular or parallel to the shoreline. Perpendicular sets caught nearly four times as many fish as the parallel sets during limited experimental use by the Open River Field Station. Perpendicular sets are preferred but may be impractical where current velocity is substantial. Gear codes are GR for Gill net-perpendiculaR and GL for \mathbf{G} ill net-paralleL.

Record count and lengths of captured fishes separately for each panel. M esh size is recorded in U serDefined Field 12 on the LTRM P Fish M easurement Sheet (see Section 6.2.3). If no fish are caught in a particular mesh size, record the mesh size, a species code of NFSH (no fish caught) and a count of zero.

A ccessory chemical and physical measurements, as per fyke netting, are made near the center of the gill net set when the net is set.

4.8 Trammel Netting

Beginning in 1994, trammel nets are an optional experimental sampling gear. Experimental use of trammel nets was adopted to explore improvement of detection of large riverine species.

Experimental trammel nets are 274 m (300 ft) long and $1.8 \mathrm{~m}(6 \mathrm{ft})$ deep. The interior panel consists of $7.6-\mathrm{m}$ (3 -inch) bar mesh. The wall panels are $34-\mathrm{cm}$ ($14-\mathrm{inch}$) bar mesh. All netting is constructed of \#208 multifilament nylon. Trammel nets have a poly-core float line and $30-\mathrm{lb}$ lead-core lead line.

Because use of trammel nets is experimental within the LTRMP, there are currently no requirements for sampling. Trammel nets may be used to explore fish communities in any aquatic area. Trammel nets may be anchored (Gear Code TA) or drifted with current (Gear Code TD).

5. Sampling Requirements

5.1 Sampling Design

5.1.1 General Aspects

Beginning in 1993, the LTRM P fish monitoring effort is based on a stratified random sampling design (Gutreuter 1993) augmented with relatively few subjectively chosen permanently fixed sampling stations (restricted to tailwaters below dams and a few backwaters and other areas of special interest) within six LTRM P study reaches. The stratified random sampling design enables unbiased design-based estimation
of relative abundance and other statistics (Cochran 1977), and supports interpretation of model-based hypothesis tests. Prior to 1992, all LTRM P fish sampling was conducted at subjectively chosen permanently fixed sampling sites (see A ppendix F for a description).

5.1.2 LTRMP Fish Sampling Strata

LTRM P fish sampling is conducted in nine strata. The strata are based on enduring geomorphic and physical features, called aquatic areas (Wilcox 1993), that help define important habitat types for fishes (Gutreuter 1992). The terminology used here is consistent with that in Wilcox (1993) except where noted below. Transient features such as vegetation create important habitats for many species but have proven to be too ephemeral to serve as sampling strata. Important transient features are recorded at the time of sampling. The LTRMP fish sampling strata are defined as follows:
a. Main channel border-unstructured area (MCB-U). An unstructured main (navigation) channel border area is that aquatic area between the margins of the main navigation channel and the nearest natural shoreline areas (island or mainland). A natural shoreline area is any shoreline, excluding dams, lock walls, and wing dams (see definition below). Revetted shoreline, although human-made, is included in M CB-U. A n unstructured channel border area is important because it is a large stratum and supports many riverine species.
b. M ain channel border-wing dam area (M CB-W). A main (navigation) channel border-wing dam area is a localized portion of main navigation channel border area in which a wing dam is the predominant physical feature. Wing dams are artificial structures that act to restrict flow to the navigation channel and are usually constructed of rock (see also Wilcox 1993). Wing dams protrude from the shoreline and may be totally submerged or emergent, depending on water elevation and construction height. Fish sampling by the LTRM P is restricted to those wing dams that are at least 50 m long (from shore to tip). Because wing dams create eddy currents and areas of low flow speed, LTRMP sampling is further restricted to those wing dams that have an exploitable hydraulic effect. Therefore, wing dams submerged under more than 2 m of water are not sampled, and wing dams submerged under 1-2 m of water may not be sampled if current velocity over the top exceeds $0.5 \mathrm{~m} / \mathrm{s}$. W ing dams are important because they concentrate some fishes.
c. Side channel border (SCB). A side channel border is the border of all secondary and tertiary channels (Wilcox 1993) that have terrestrial margins and carry flow downstream through the floodplain (and hence have measurable current velocities) at normal water elevations. For the purpose of LTRM P fish sampling, fully submerged secondary or tertiary channels that do not have terrestrial margins (such as may occur in impounded areas above dams) are not distinguished as side channels. Shallow narrow side channels may not have a well defined trough or thalweg, in which case the borders extend to mid-channel. Side channels are important because they are lotic areas that are relatively unaltered and isolated from navigation traffic.
d. Tailwater zone (TWZ). For the purpose of LTRMP fish sampling, the tailwater zone is defined as the area immediately downstream from a lock and dam and includes the plunge-pool (scour hole) created by the dam. The tailwater border is defined as the first 500 m of shoreline below a lock and dam. Tailwater zones provide unique conditions that act to concentrate many fishes, including important large riverine species such as shovelnose sturgeon. Because tailwaters are small and are of special interest, LTRMP fish sampling is conducted at permanently fixed sites within tailwaters. Sampling site locations are not randomly selected within tailwaters.
e. Backwater, contiguous-offshore (BWC-O). C ontiguous backwaters are aquatic areas that have some contiguous aquatic link to the main navigation channel but are separated from the main channel by a terrestrial area. A dditionally, for the purpose of fish sampling within the LTRM P, backwaters are further defined as lacustrine areas; they do not carry flow at normal river elevations. Backwaters may consist of floodplain depression lakes, sloughs (contiguous abandoned-channel lakes), lateral levee lakes, contiguous scour channel lakes, and artificial lacustrine areas (W ilcox 1993). Contiguous backwater-offshore areas are contiguous backwaters more than 50 m from the nearest shoreline. Small backwaters may not have such an offshore area.
f. Backwater, contiguous-shoreline (BWC-S). C ontiguous backwater-shoreline areas are those areas of backwaters, as described in (e) above, that are within 50 m of the nearest shoreline.
g. Impounded-offshore (IM P-O). Impounded areas are usually large, mostly open-w ater areas located immediately upriver from locks and dams. Water elevations are held above pre-impoundment levels by the dams. Impounded areas may contain submerged channels and areas that were terrestrial before impoundment. A n offshore impounded area is that portion of the impounded area more than 50 m from the nearest shoreline.
h. Impounded-shoreline (IM P-S). Impounded shoreline areas are those portions of impounded areas (as per h above) within 50 m of the nearest shoreline.
i. M ain channel trough (CTR). The main channel trough is the thalweg or navigation channel within the main channel. This channel is usually identified as the area between the navigation buoys. From 1990 through 1992, trawling was conducted in the main channel trough. Trawling in the main channel trough was suspended in 1993 for lack of efficacy, and experimental evaluations of replacement methods were initiated.
j. Tributary mouth (TRI). The tributary mouth is the portion of a tributary stream that is within the floodplain of a large river. The LTRM P does not conduct routine monitoring in tributary mouths, but this aquatic area is sampled as part of specialized LTRM P projects.
k. Tributary delta lakes. Lake Pepin, a tributary delta lake (W ilcox 1993) in Pool 4 of the M ississippi River, contains unique habitats, nonexistent in other reaches of the M ississippi and Illinois Rivers, and requires specialized sampling. Because M innesota Department of N atural Resources fisheries personnel conduct ongoing monitoring in Lake Pepin, the LTRM P does not conduct fish monitoring in Lake Pepin.

5.1.3 Allocation of Sampling Effort

Sampling gears are deployed independently within strata. That is, separate lists of randomly selected sampling sites are generated for each gear type. Because some gears cannot be deployed under certain conditions, not all gears are deployed in each stratum; however, there are at least three mandatory gears for each stratum. Because the proportions of various strata vary among study reaches, gear effort is allocated on a reach-specific basis. The mandatory and optional gears and general guidelines for effort allocation during each sampling time period are given in Table 2.

Table 2. General gear effort allocation guidelines. Because the proportions of strata vary dramatically among Long Term Resource Monitoring Program study reaches, actual effort allocations may be different.

Gear	Strata											
	$\begin{gathered} \text { MCB- } \\ \mathbf{U} \end{gathered}$	$\begin{gathered} \text { MCB- } \\ \text { W } \end{gathered}$	SCB	BWC-0		BWC-S		TWZ	IM P-0		IMP-S	
				u	v	u	v		u	v	u	v
D	+	+	+	0	+	+	+	0	0	+	+	+
N	0	0	0	0	0	0	0	+	0	0	0	0
F	0	0	0		+	+	+	0		+	+	+
M	+	+	+		+	+	+	0		+	+	+
S	0		0			0					0	
T	0		0					+				
H	+	+	+	+	0	0	0		+	0	0	0
G	0	0	0	0	0	0	0		0	0	0	0
X				+					+			
Y				+					+			
\% Effort	12	12	26		5		25	10		5		5

MCB-U = M ain channel border-unstructured area; $M C B-W=M$ ain channel border-wing dam habitat; SCB = Side channel border; TWZ = Tailwater zone; BW C-O = Backwater, contiguous-offshore; BWC-S = Backwater, contiguous-shoreline; IM P-O = Impounded-offshore; IM P-S = Impounded-shoreline; u = U nvegetated; v = V egetated

D = Day electrofishing; N = Night electrofishing; F = Fyke net; M = Mini fyke; S = Seine net; T = Trawl; H = Tandem (connected) hoop nets (obsolete); $G=$ Gill nets; $\mathrm{X}=$ Tandem fyke nets; $\mathrm{Y}=$ Tandem fyke nets
$+=M$ andatory; $0=$ Optional

Effort allocation among strata does not compromise unbiased estimation in stratified random sampling. However, effort allocation does influence the precision of estimates. The approximate sampling allocation (Table 2) was based on subjective appraisals of the ecological importance of strata to river fishes, approximate size, and the objectives of the LTRMP. Optimal allocation schemes were considered but were abandoned because minimization of variance required allocation of the preponderance of samples to the impounded stratum and neglected ecologically important strata such as side channels and backwaters. Sample allocation affects precision of estimates within and across strata but does not affect the unbiasedness of stratified random sampling. Therefore, allocations of sampling effort among strata need not remain constant through time or among study reaches.

5.1.4 Seasonal Distribution of Fish Collections

Full sets of collections are made in all strata during each of three time periods: June 15 to July 30 , A ugust 1 to September 15, and September 16 to 0 ctober 30. Prior to 1991, time allocations were different (A ppendix F). The primary purpose of this seasonal allocation of samples is to ensure data are collected that represent warm season conditions.

5.1.5 Random Selection of Collection Sites

Prior to the sampling season, lists of primary and alternate sample collection sites are generated. Collection sites are represented by a $50-\times 50-\mathrm{m}$ grid in a geographic information system (GIS) database. Grids are indexed and referenced by Universal Transverse Mercator (UTM) coordinates. The GIS database includes delineations of the known extent of sampling strata. A reas known to be inaccessible, either for lack of legal access or due to physical conditions that preclude boat travel, are deleted from the sampling frame. Within each study reach, the grids are classified as to whether they represent areas in the upper or lower half (segment) of the study reach. Within each stratum, grids are selected at random, with uniform probability, to produce a list of primary collection sites for each sampling gear. For each primary collection site, the set of all grids within the stratum that occur within a 1-km radius of the center of the collection site is identified, and a second random selection of grids is made from this set. This second random selection process produces a list of alternate collection sites. The lists of primary and alternate collection sites are sent to field stations prior to sampling.

5.1.6 Location of Collection Sites During Sampling Operations

The centers of collection sites can usually be located to within 100 m by comparison of actual physical features with a corresponding base map. Sites that are in off-shore impounded areas or complex mazes of channels may be difficult to locate in this way and a Global Positioning System (GPS) receiver may have to be used. Accuracy of the M agellan (M agellan Systems Corporation, M onrovia, CA) GPS units used by the LTRMP is 100 m under good conditions.

D uring a particular sampling venture, the primary site is located in the field and a determination is made as to whether or not the particular gear can be deployed. This determination is based on a simple assessment of whether or not the sampling gear can be physically deployed at the site. The primary consideration is whether depth is sufficient to permit access to the area and to deploy the gear. If it is determined that the primary site could not be sampled (1) the header box of an LTRM P Fish Collection Sheet is completed (except for finish date and time) with a Summary C ode of 2, (2) depth is recorded and a "Comment" is entered explaining the condition that prevents sampling, and (3) the nearest alternate site is located. This process may be repeated until an alternate site is found that can be sampled; however, LTRM P Fish Collection Sheets are not required for alternate sites that could not be sampled. If a site can be sampled with a particular gear, the gear is deployed according to procedures for that gear.

Field station staff schedule sampling operations. Sampling efforts using the various gear must be interspersed, as must visitation to collection sites in different segments of study reaches. For example, all of the electrofishing must not be conducted within a single 1 -week period, nor must sampling proceed systematically from one end of the study reach to the other. Field Station Team Leaders and Fisheries Specialists are responsible for ensuring that use of various sampling gears and sampling within upper, middle, and lower segments of study reaches are interspersed though each time period.

5.2 Fish Identification and Measurement

5.2.1 General Information

This section contains guidelines for collection and recording of fish data. The data collected during fish sampling consist of (1) an unambiguous description of the sample in space and time, (2) site-specific observations and measurements of habitat characteristics, (3) quality control information, and (4) enumerations and measurements of fish catches. Instructions for coding data sheets are given in Section 6. A ppendix G contains suggested references to be used as keys in the identification of fish.

5.2.2 Identifying, Measuring, Weighing, and Enumerating Fish

For LTRM P routine monitoring collections, fish must be identified to species to the extent reasonably possible. Fish that cannot be identified to species must be preserved and returned to the lab for identification and enumeration (see Section 5.2.7). Scientific and common names are those most recently established by the A merican Fisheries Society. F our-character fish codes (A ppendix H) established by the EMTC are used for reporting species on data sheets. For comparative purposes, the LTRMP also maintains and provides a reference file of species identification codes used by other fish collection agencies. Counts by species and length category are required.

Prior to 1992, individual measurements of lengths and weights were required for all species in all collections. Beginning with the 1992 field season, individual lengths and weights are required only from subsamples of black crappie, channel catfish, common carp, highfin carpsucker, sauger, and walleye captured during the last time period. These subsamples consist of haphazard (approximately random) selection of at least two (2) individuals per length group. Additional individual length and weight measurements may be recorded, but this should be done only to satisfy specific objectives. One scenario where additional individual length measurements are useful is providing data for formal length frequency analysis to estimate growth and mortality parameters. Obviously, such special objectives should be carefully considered on a case-by-case basis and must be coordinated with the EM TC Fisheries Component Specialist. Length group counts are required for all species.

W henever possible, the maximum total length ($\mathrm{M} T \mathrm{~L}$) of an individual fish is measured to the nearest 1 mm . M aximum total length is the greatest possible length of the fish with mouth closed and caudal rays squeezed together to give the maximum overall measurement (A nderson and Gutreuter 1983). Standard length (SL ; the maximum distance from the front tip of the fish to the posterior margin of the hypural bone as manifested by the "notch" created by flexing the caudal peduncle; A nderson and Gutreuter 1983) is recorded for specimens that have damaged or deformed caudal fins, but these individuals are not included in population structure analyses. Fork length (FL ; the maximum distance from the front tip of the fish to the posterior edge of the median caudal fin rays; A nderson and Gutreuter 1983) may be used for fish such as paddlefish and sturgeon that have rigid upper caudal lobes or variable caudal filaments. All individual length measurements are reported in millimeters on fish data sheets.

A Pathogenic Code (Table 3) is recorded for individual fish showing visible external injury, disease, anomaly, or parasite burden. This code is recorded in the "PC" field.

Table 3. Fish health and pathogen codes for Long Term Resource M onitoring Program fisheries component

Code	Abnormality
0	None
1	Parasite
2	Skeletal abnormality
3	Tumors
4	Injury
5	Skin/fin/eye
6	Other

A Summary Code is assigned to the collection to document the overall status of important conditions that can affect proper interpretation of the data (see Table 4). Therefore, the correct selection of this Summary Code value is a critical task. Crew Leaders are responsible for selection of the most accurate Summary Code. Crew Leaders must not be pressured by participating agencies to select inappropriate Summary Codes. A ny suggestion of incentives to choose inaccurate Summary Codes must be reported to the EM TC Fisheries Component Specialist. Summary Codes of 1-2 describe unsuccessful sampling attempts, and Summary Codes 3-8 describe various degrees of sampling success. A Summary Code of 5 is reserved for ideally completed samples. In general, data from collections having Summary C odes ≥ 3 may be used in analyses and reports. Exceptions to this rule apply to specific data. For example, weight data from collections having a Summary Code of 4 (weighing equipment probably in error) should not be used to construct weight-length equations.

5.2.3 Subsampling

If the number of specimens collected prevents timely identification and measurement in the field, specimens may be preserved in formalin or a subsample may be selected for measurement followed by enumeration or estimation of the remaining sample. Subsampling is defined as dividing an unmanageable collection of one species of fish into a representative manageable sample in which lengths and weights are recorded along with the total number of fishes in the collection. Subsampling is necessary to keep fish alive and to keep sampling time manageable. The Crew Leader determines whether or not the sample is too large to efficiently work up. A subsample must not consist of fewer than 100 fish of a species. W here practical, fish in the total sample should be counted. F or large catches, the count may be estimated by weighing and counting a subsample of approximately 100 fish, weighing the total sample, and then calculating the total count, \hat{n}_{t}, as

$$
\hat{n}_{t}=n_{s} w_{t} / w_{s}
$$

where n_{s} and w_{s} are the count and weight, respectively, of the subsample, and w_{t} is the weight of the total sample. Because the density of fish flesh is nearly constant (to achieve neutral buoyancy), volume is proportional to weight. Therefore, volumetric measures may be used rather than weight measures in the equation above.

Table 4. Sampling Summary C odes, which range from 1 to 8 and document the success or failure of a sampling attempt. Codes of 1 and 2 describe unsuccessful sampling attempts. C odes 3-8 describe successful sampling attempts.

Summary

 code DescriptionUnsuccessful collection attempts:

1

2
H abitat cannot be sampled due to environmental conditions (e. g., a dry or inaccessible site). Explain in Comments if site is a primary sampling site.

Successfully completed collection attempts:
3

4

5
Signifies that:
a. The data were collected at the identified time and place.
b. All methods followed the LTRM P Procedures M anual.
c. All equipment and gear were functional.
d. No unusual environmental conditions existed that could prohibit interpretation of the data as being representative of those in the sampled habitat type at that time.

6

7

8
Non-critical gear modification (e.g., fyke net lead shortened). Explain modification in Comments.

A gear that is normally deployed along a shoreline was deployed along a pseudoshoreline formed by dense aquatic vegetation or flooded terrestrial vegetation.

M inor gear damage or alteration noted at completion of sample. The extent of the alteration or damage was almost certainly insufficient to cause major changes in efficiency. Explain damage or alteration in Comments.

Large fish and species that do not dominate the collection are processed normally. Fish to be subsampled are assumed to be randomly located by size throughout the live well. The field crew mixes the holding tank and then scoops out fish with a standardized scoop net and measures the bulk weight of these fish. (These fish should also be enumerated if their numbers are not excessive.) This process is repeated until at least 200 fish of a species remain. These remaining fish are processed normally and
weighed in aggregate. The estimated or enumerated total count of fish not measured is recorded on the data sheet by entering the species code, leaving length blank, and recording the count (bulk weight is optional). Mean lengths from the subsample are no longer recorded for the unmeasured fish in the residual whole sample.

Specimens that cannot be identified in the field are preserved in suitable plastic containers labeled with the L ocation C ode, Pool/R each Code, Project C ode, Start D ate and Time, Gear C ode, and Stratum C ode. All preserved specimens, with the exception of those sent to an identification expert (see 5.2.8), are identified and measured at the lab as time permits.

5.2.4 Measurements from Key Species During the Last Time Period

K ey species are black crappie, channel catfish, common carp, highfin carpsucker, sauger, walleye, and any others as determined by study objectives. During the last time period, individual length and weight measurements may be taken from a subsample of these species from each sampling site where they are captured. These subsamples consist of haphazard (approximately random) selection of at least two (2) individuals per length group. These fish are measured to the nearest 1 mm and are weighed (in grams) to the nearest 1%. Note: Do not record weights of fish that are $<\mathbf{1 0 \%}$ of the minimum scale capacity (100 g for a $1,000-\mathrm{g}$ scale) whenever spring-loaded mechanical scales are used; spring-loaded scales are too insensitive for weighing such small fish (G utreuter and K rzoska 1994). These subsamples should be made approximately random by using a dip net to take a random sweep and working through all captured fish in the sweep before repeating this process (if necessary).

5.2.5 Collecting Specialized Data: Tagging, Aging Structures, and Food Use

Special objectives may require collection of specialized data. These objectives must be coordinated with the EM TC Fisheries Component Specialist. Currently, the LTRM P collects specialized data to monitor the potential effects of the invasion of zebra mussels on freshwater drum, a molluscivorous fish, and to test certain predictions of the flood-pulse hypothesis. Procedures for these efforts are provided in annual memoranda, which become addenda to this Procedures M anual.

These special objectives require collection of subsample specimens, which may include sagittae (the largest of the three otoliths), scales from below the lateral line and under the tips of pelvic fins when depressed in natural position, stomachs, and stomach contents. Otoliths and scales are placed in small coin envelopes to which a unique barcoded specimen number has been attached. Stomachs and stomach contents are placed in "whirl-pack" bags and preserved with ethanol or other non-acidic alcohol. These bags must either contain a barcoded waterproof label or must be marked with a bar-coded sticker label. The bar code numbers are recorded on LTRM P Fish M easurement Sheets (see Specimen numbers under U ser-D efined Fields in Section 6.2.3).

The LTRM P Fish C ollection and M easurement Sheets were designed to be adaptable to record specialized data. See Section 6 for procedures for recording specialized data.

5.2.6 Measurements from All Species

The minimal data required for all species are counts by total length class (TLC). Where catches are Iarge, subsampling (Section 5.2.3) may be implemented. Standard TLCs for fish $\leq 400 \mathrm{~mm}$ maximum total length ($\mathrm{M} T \mathrm{~L}$) are $1-\mathrm{cm}$ intervals and for fish $\geq 400 \mathrm{~mm}$ M TL TLCs are $2-\mathrm{cm}$ intervals. All TLCs are labeled using their lower length boundaries. For instance, fish in TLC 9 are between 90 and 99 mm TL, and fish in TLC 40 are between 400 and 420 mm TL .

5.2.7 Training

The first level of quality assurance associated with the process of data collection for the LTRM P occurs when a data sheet is completed in the field. The person who initials a data sheet testifies that the recorded data are representative of the location being sampled and that the data have been collected according to the procedures described in this manual and demonstrated during LTRM P training courses. Therefore, at least one person in the fish sampling crew is a designated LTRMP Crew Leader, qualified to initial field data sheets by having passed the fish sampling course conducted by the EM TC. This course includes, but is not limited to, fish identification and measurement, gear operation and maintenance, UM RS aquatic areas identification, LTRM P procedures and quality assurance guidelines, and fish population analyses.

Additional safety and first aid training associated with electrofishing is described in Section 4.1, Electrofishing.

5.2.8 Expert Identification and Reference Collections

The EM TC fish training course is designed to provide staff with the ability to readily identify 95% of the fish collected in the field. Recently published identification keys are carried in the field to facilitate field identification. W hen a specimen cannot be identified to the Crew Leader's satisfaction, it is hardened in formalin and preserved in alcohol in a container labeled with the field station number, location code, date, time, and gear code. The fish is later identified at the field station or is sent to an expert in the field of fish identification. A list of recognized experts in the field of fish identification and their addresses is updated regularly by the EM TC. This list is maintained at each field station (A ppendix I).

Reference fish collections are maintained, as needed, at the field stations to assist in identification of rare or unusual species. Collection containers are clearly labeled with scientific and common names of the specimen(s), the date, UTM coordinates and zone, gear type associated with the collection, and the name of the person making the identification.

5.2.9 Investigating Fish Kills

Field personnel will investigate all fish kills in accordance with the Field Manual for the Investigation of Fish Kills, U.S. Department of the Interior, Fish and W ildlife Service Resource Publication 177, Fred P. M eyer and Lee A. Barclay, editors.

6. Fish Data Sheets and Coding Instructions

6.1 Overview

Correct and complete recording of data is absolutely essential to the success of all LTRMP efforts. C onversely, failure to comply with data recording procedures compromises the mission of the LTRM P and results in unrecoverable waste of sampling effort. Procedures for recording data are driven by the need for correct information and documentation of quality assurance and chain-of-custody information. Because information critical to future resource management decisions is the primary product of the LTRM P, it is essential that all data are properly recorded. All LTRMP field staff who collect fish data are expected to understand and comply with data recording procedures.

D ata collected during fish sampling excursions are recorded on two data sheets: the Fish Collection Sheet and the Fish Measurement Sheet. A collection is defined as a sampling venture consisting of a unique combination of location, time, and sampling gear. One Fish C ollection Sheet (A ppendix C; EM TC $03 / 24 / 95$) is completed for each collection. This sheet is used to document gear-specific sampling effort, detailed spatial data, key physical and chemical measurements, qualitative observations on local habitat characteristics, comments, and quality assurance data. One or more Fish M easurement Sheet (Appendix D; EM TC 03/24/95) is used to record fish catch data from each collection. These data sheets serve as the sole means of recording fish collection and catch data obtained from routine monitoring efforts, biological response monitoring at Habitat Rehabilitation and Enhancement Projects, special research projects, and any ad hoc experimental excursions. Both data sheets were designed to optimize the mix of flexibility, capture of essential data, simplicity, visual clarity, and quality assurance objectives.

6.2 Coding Instructions

6.2.1 General

Record data using waterproof ink. A Number 2 pencil may be used only if weather is inclement, in which case this must be noted in the "Comment" field. W rite legibly so that others who are unfamiliar with your handwriting can read it. Record all data accurately. Site definition data in the top portions of the data sheets must accurately represent the place and time a collection was made and must be identical on all sheets for any particular collection. Erasure of information is absolutely prohibited. If a recording error is made, draw a single line through the error, write the correction above or adjacent to the error, and sign and circle your initials next to the correction or error. Sampling Crew Leaders are responsible for ensuring that data sheets are complete and accurate. Completion of all fields is mandatory except where noted below.

Only data described in Sections 6.2.2 and 6.2.3 are to be recorded on the LTRM P data sheets described in those sections, and ALL DATA MUST BE RECORDED IN THE APPROPRIATE SPACES (AND ONLY IN THE APPROPRIATE SPACES, EXCEPT FOR CORRECTIONS). Never record ancillary data in any field (except for preapproved use of the user-defined fields). These requirements are crucial because data entry operators cannot interpret non-standard data and because the data sheets must contain an unambiguous record that can withstand legal challenge. The presence of recording irregularities (e.g.,
recording count tallies in the space provided for weight measurements) compromises the record by opening an opportunity to claim that other records may contain misrepresentative data and are therefore suspect.

6.2.2 Fish Collection Sheet (EMTC 03/24/95)

All fields (recording spaces) on each Fish Collection Sheet (A ppendix C) are recorded in the field at the time specific measurements are taken except for application of bar code stickers, total number of fish collected, certification, and perhaps number of fish measurement data sheets and Universal Transverse M ercator (UTM) or latitude/longitude coordinates (N/S and E/W) (see below), which are recorded when logging data sheets and performing the final QA/QC checks (see Section 7 below). The content of Fish Collection Sheets is as follows:

Field name
Site Alias (Optional)
Place Bar Code Here

Description and coding instructions

Space is provided to record an optional site alias for field station use.
A ffix bar code sticker in the space provided in the upper right margin upon return to office (see Section 7.2, Pre-Submission QA/QC Procedures). Note: Application of the bar code sticker is mandatory; data sheets lacking bar codes will be returned to the field station without being keyed.

One-digit numeric field station number:

```
1= Lake City, M N 4 = Wood River, IL
2 = Onalaska, WI 5 = C ape G irardeau, M O
3 = Bellevue, IA
= Havana, IL
```

Five-digit alphanumeric code for LTRMP Location Code having the format nnnnn. nnnnn. For randomly selected sites enter nnnn.RS, where nnnn is the site number from the sampling map or site list. For permanently fixed sites record rmmm.ma, where r designates the river ($\mathrm{M}=$ M ississippi and I = Illinois), mmm. m is the river mile (recorded to the nearest 0.1 mi), and a is an alphabetic code for the relative lateral position across the floodplain.

Two-digit alphanumeric code for the LTRM P study reach or pool number:

```
04 = Pool 4, UMR 26 = Pool 26, UMR
08= Pool 8, UM R LG = La Grange Pool, Illinois River
13= Pool 13, UMR OR = Open M ississippi River
```

Four-digit alphanumeric LTRM P project code. Format is A-nnn, where A is a letter describing project type and nnn is a special project number. Project types are as follows:

Field name	Description and coding instructions
	M = RTA standardized resource monitoring $B=$ HREP biological response monitoring E = Ad hoc exploratory sampling $R=$ Special research project
	Note: A three-digit project number nnn is not recorded for RTA standardized resource monitoring (M); however, the EMTC will assign project numbers for all other project types. To ensure the integrity of the data, all project numbers must be obtained from the EMTC.
Start D ate	Date on which a gear collection was initiated (e.g., the date on which a net was set). Six-digit numeric mmddyy format wherein A pril 1, 1995, is recorded as 040195.
Start Time	Four-digit 2400-h (military) Central Standard Time (CST) at which a gear sample begins (e.g., the time a net was set or an electrofishing run was begun). When a gear sample is begun, immediately obtain the time value from a watch. Record time of sample initiation to the nearest minute. Examples: 1:45 p.m. is recorded as 13:45 and midnight is 00:00 of the new day.
Finish D ate	D ate on which a gear sample was completed (e.g., the date on which a net was lifted). Format is the same as "Start D ate."
Finish Time	Four-digit 2400-h Central Standard Time (CST) at which a gear sample is completed (e.g., the time that a net is lifted or an electrofishing run [actual shocking time] is completed). Format and accuracy requirements are the same as "Start Time." L eave this field blank for seine samples.
Site Type	One-digit code identifying the type of sampling site, as follows:
	$0=$ Primary randomly selected sampling site $1=$ Alternate randomly selected sampling site $\mathbf{2}=$ Subjectively chosen permanently fixed site
Stratum (Habitat	Four-digit alphabetic LTRM P habitat class description:
	BWC-0 $=$ Backwater, offshore
	BWC-S = Backwater, shoreline
	MCB-U $=$ M ain channel border, unstructured MCB-W $=$ Main channel border, wing dam
	IMP-O = Impounded, offshore
	IMP-S = Impounded, shoreline
	SCB $=$ Side channel border
	TWZ = Tailwater zone (permanently fixed sampling sites) CTR = M ain channel trough (optional sampling only)
Gear	One-digit alphabetic gear code as described in Table 1 and summarized below:

Field name	Description and coding instructions
	D = Day (1 h after sunrise to 1 h before sunset) electrofishing
	F = Fyke netting
	GR = Gill netting, perpendicular (to shore) set
	GL = G ill netting, parallel (to shore) set
	HS = Hoop netting, small LTRMP net
	HL = Hoop netting, large LTRMP net
	$\mathrm{M}=\mathrm{M}$ ini fyke netting
	$\mathrm{N}=$ Night (1 h after sunset to 1 h before sunrise) electrofishing S = Seining
	T $=$ Trawling
	TP = Plankton trawling
	$\mathrm{X}=$ Tandem fyke netting
	Y = Tandem mini fyke netting
	TA = Trammel netting, anchored set
	TD $=$ Trammel netting, floating and drifting
	(Gill nets: Record mesh size of gill net panels in User-D efined Field 12
	on the Fish M easurement Sheet; see U ser-D efined Fields in Section 6.2.3 below.)
Time Period	One-digit numeric LTRM P Sampling Time Period code. Example: The first sampling time period is coded as 1.
Summary Code	One-digit numeric code documenting the overall quality of a sample collection as described in Table 4 and summarized below:
	1 = Gear failure; site may be resampled within time period
	$\mathbf{2}=$ Site cannot be sampled (i.e., site is dry or inaccessible)
	3 = Sample collected under unusual environmental conditions
	4 = Weighing equipment may be in error due to wind and waves
	5 = Normally completed sample; all LTRM P procedures followed
	6 = Non-critical gear modification (e.g., fyke net lead shortened)
	7 = Pseudo-shoreline used for shoreline gear
	$8=$ Minor gear damage or noncritical gear failure

2. Location Data

Zone

Accuracy
Two-digit numeric field to record Global Positioning System (GPS) zone. For most LTRM P reaches, there is just one value for Zone.

Four-digit numeric field to record a measure of positioning accuracy. Record Percent Dilution of Precision (PDOP) from GPS devices and the following codes for base map cross-reference and revisits to marked fixed sites:
000.1 = Almost certain accuracy within 100 m because of immediate proximity to uniquely identifiable features (undisturbed marker, wing dam, day mark, etc.)
$000.2=$ High confidence of accuracy within 100 m because of agreement between general site appearance and identifiable features on a base map
$000.3=0$ ther than above

Field name	Description and coding instructions
N/S Coordinates	Six-digit field to record latitudinal (north/south) coordinates of the collection location. U nits are specific to location method; U niversal Transverse M ercator (UTM) Northing for Magellan and degrees-minutes-seconds north latitude for Loran. For fixed sampling sites, this value should be measured using a GPS device at least once when each site is marked and recorded in the Sites Table. On subsequent visits, most fixed sites can be relocated from a base map with acceptable accuracy (100 m) or from site markers. For revisits to marked fixed sites, record the UTM Northing from the current Sites Table. Unmarked open water sites may have to be relocated using a M agellan or other GPS device.
M ethod	One-digit numeric code specifying the method used to locate the collection site, as follows:
	$1=$ UTM s recorded from cross-reference between base map and site features 2 = UTM s recorded from GPS device (M agellan) 3 = Latitude (N / S coordinates; degrees, minutes, seconds) and longitude (E / W coordinates; degrees, minutes, seconds) recorded from GPS (Loran) $4=$ Latitude and longitude recorded from cross-reference between base map and site features
E/W Coordinates	Seven-digit field to record the longitudinal (east/west) coordinates of the collection location. U nits are specific to location method; UTM Easting for M agellan and degrees-minutes-seconds west latitude for Loran. For fixed sampling sites, this value should be measured using a GPS device at least once when each site is marked, and it should be recorded in the Sites Table. On subsequent visits, most fixed sites can be relocated from a base map with acceptable accuracy (100 m) or from site markers. For revisits to marked fixed sites, record the UTM E asting from the current Sites Table. Unmarked open water sites may have to be relocated using a M agellan or other GPS device.

3. Gear Effort

Time

Distance
Four-digit numeric field to document actual elapsed time required to capture a sample of fish (actual duration of gear deployment). Format is 2400-h (military) time, hh:mm, where a fyke net set fished for 25 h and 15 min is recorded as $25: 15$. Effort (time) values must be accurate to the nearest minute and must equal the difference betw een finish date and time and start date and time. Leave this field blank for seine samples.

Three-digit numeric field for recording the length (in meters) of an electrofishing run or trawl haul. Completion of this field is required only for electrofishing, trawling, and trammel net drifting.
4. Electrofishing Settings
(Electrofishing Only)

Power Goal	Four-digit field to record the predetermined electrofishing power goal (in watts). Note: For electrofishing only.
Power Used	Four-digit field to record the actual average electrofishing power (in watts) consumption.
Volts and QF	Three-digit numeric field to record DC volts. The Quality Factor (QF) is a one-digit numeric field:
	Blank $=$ Normal operation/acceptable measurement $0=$ Voltage meter inoperative $1=$ Unstable voltage readings (varies by $>70 \mathrm{~V}$); equipment questionable
A mps and QF	Three-digit numeric field to record DC current (in amperes). The Quality Factor (QF) is a one-digit numeric field:
	Blank $=$ Normal operation/acceptable current determination $0=$ Ammeter inoperative $1=$ Unstable current readings (varies by > $\mathbf{1 0} \mathrm{amps}$)
Pulse (Hz)	Three-digit numeric field to record pulse frequency (Hertz [= cycles/sec]).
Duty Cycle	Three-digit numeric field to record electrofishing duty cycle (percentage of time current is flowing).
5. W ater Data	M easurements of physical and chemical characteristics follow procedures documented in the LTRM P water quality monitoring procedures, except as noted below.
Secchi and QF	Three-digit numeric field for recording measurement of water transparency (in centimeters) using a Secchi disk. Quality Factor codes are printed on the data sheets:
	$\begin{aligned} & \text { Blank = Normal measurement/no problems } \\ & 0=\text { Equipment inoperative } \\ & 1=\text { Equipment in question (e.g., paint discolored) } \\ & 3=\text { Reading off scale (high) } \\ & 4=\text { Used proximate measurement }- \text { no measurement at this site } \\ & 5=\text { No sample taken } \\ & 9=\text { Non-standard method used } \end{aligned}$
Conductivity and QF	Four-digit numeric field to record conductivity to the nearest $1 \mu \mathrm{~S} / \mathrm{cm}$. Quality Factor codes are printed on the data sheets:
	Blank = Normal measurement/no problems $0=$ Equipment inoperative

Field name	Description and coding instructions
	$\begin{aligned} & 1=\text { Equipment in question } \\ & 3=\text { Reading off scale (high) } \\ & 4=\text { Used proximate measurement }- \text { no measurement at this site } \\ & 5=\text { No sample taken } \\ & 9=\text { Non-standard method used } \end{aligned}$
W ater V elocity and QF	Three-digit numeric field to record water velocity to the nearest $0.1 \mathrm{~m} / \mathrm{s}$. Quality Factor codes are printed on the data sheets:
	Blank $=$ Normal measurement/no problems $0=$ Equipment inoperative 1 = Equipment in question 3 = Reading off scale (high) 5 = No sample taken 9 = Non-standard method used
	Three lines are provided to record intermediate measurements.
W ater Temp and QF	Three-digit numeric field to record water temperature measurement to the nearest $0.1^{\circ} \mathrm{C}$. Quality Factor codes are printed on the data sheets:
	Blank $=$ Normal measurement/no problems $0=$ Equipment inoperative $1=$ Equipment in question 4 = Used proximate measurement - no measurement at this site 5 = No reading taken $9=$ Non-standard method used
D.O. and QF	Three-digit numeric field to record dissolved oxygen concentration to the nearest $0.1 \mathrm{mg} / \mathrm{L}$. This field is optional. Quality Factor codes are printed on the data sheets:
	Blank $=$ Normal measurement/no problems $0=$ Equipment inoperative $1=$ Equipment in question 3 = Reading off scale (high) 4 = Used proximate measurement - no measurement at this site 5 = No sample taken $9=$ Non-standard method used
Depth and QF	Three-digit numeric field to record water depth to the nearest 0.1 m . Quality Factor codes are printed on the data sheets:
	Blank $=$ Normal measurement/no problems $0=$ Equipment inoperative 1 = Equipment in question 5 = No sample taken 9 = Non-standard method used
Stage Height	Water elevation measurement obtained from local stage height gauge. Record gauge location as " $\mathrm{G}=$ name" in the Comments field. This is an optional field. Quality Factor codes are:

Field name	Description and coding instructions
	$=$ Feet relative (local) measure
$\mathbf{2}=$	$=$ Feet above mean sea level (AM SL)
$\mathbf{3}=$ Meters relative (local) measure	
$\mathbf{4}$	$=$ Meters above mean sea level (AMSL)

6. Structure

Emergent and
Submersed A quatic V egetation
(Percent
Coverage)

Density

Predominant
Substrate

Other Structure
7. Comments
(Bottom of Sheet)

One-digit numeric field to record qualitative estimate of percent of area within a $100-\mathrm{m}$ radius in which there is emergent and/or submersed aquatic vegetation, based on visual observation. V alues are as follows:

0 = 0\% (no emergent/submersed aquatic vegetation apparent)
1 = 1\%-19\% coverage
2 = 20\%-49\% coverage
3 = $\geq 50 \%$ coverage
One-digit numeric field to record qualitative estimate of density of both emergent and submersed aquatic vegetation within a $100-\mathrm{m}$ radius, based on visual observation. M ake and record this estimate only if emergent or submersed aquatic vegetation is present. V alues are as follows:
$1=$ Prevailing vegetation is sparse (probably $<10 \mathrm{stems} / \mathrm{m}^{2}$) and does not create an "edge" at its perimeter
$2=$ Prevailing vegetation is dense (probably $\geq 10 \mathrm{stems} / \mathrm{m}^{2}$ and creates a distinct "edge" at its perimeter

One-digit numeric field to record qualitative observation of sediments based on visual and tactile observation. V alues are as follows:
$1=$ Silt (very fine and very soft sediments that may contain highly hydrated [very soft] clay; sand lacking)
2 = Silt/C lay/Little Sand (fine and soft sediments dominated by silt but usually containing little fine sand, with perhaps dehydrated [firm] clay pellets or moderately hydrated clay with little fine sand)
3 = Sand/M ostly Sand (firm to very firm, fine to coarse sediments with sand dominant, or entirely sand)
$4=$ Gravel/Rock/Hard Clay (hard substrate consisting of dehydrated [firm] clay, gravel, rock, bedrock, or concrete)

Eight check-off boxes to record presence of other habitat structure within a $100-\mathrm{m}$ radius. To record presence of one or more of the features listed on the data sheet, write X in the appropriate box. Describe important features that are not listed on the data sheet in the "C omments" field.

Eighty-character field to record miscellaneous comments and observations. Only the first 80 characters are keyed. Print one character per box. A bbreviate to capture key ideas. If more space is needed, write in bottom margin of data; however, any writing outside the boxes will not be keyed.

Field name
8. Other Information

N umber of containers returned to lab for identification

Number of fish measurement data sheets

Total number of fish collected

9. Certification

A re header blocks on this sheet and the fish measurement data sheet complete and do they match?

A re the data sheets complete?

Crew Leader Code

Crew Leader's Signature

Description and coding instructions

Accurate QA/QC data are essential components of a good sampling program. Recording of the following information is mandatory.

Two-digit field to record the number of individual containers (whirl-pacs, vials, etc.) containing specimens that were returned to the field station or lab for identification or measurement. This field must always be completed. If no fish were returned to the field station or lab, record "0" (zero).

Two-digit numeric field to record the total number of Fish M easurement Sheets (recorded in the field and lab) completed for the sample collection.

Five-digit numeric field to record the total number of fish (of all species, whether enumerated in the field or lab) captured in the sample collection. This number is to be obtained from a manual tally of fish counts on the corresponding Fish M easurement Sheets.

Verify that header data on the Fish Collection Sheet and all associated Fish M easurement Sheets are complete and identical, then check (\checkmark) Yes. This information is required but is not keyed.

V erify that the Fish Collection Sheet and all associated Fish M easurement Sheets are properly completed and correct, then check (\checkmark) Yes. This information is required but is not keyed.

Four-digit alphanumeric field to record the LTRM P Crew Identification Code. These codes are permanently assigned to LTRM P staff at each station. Record the code that was assigned to the crew member who is responsible for direction of the particular sample collection.

Space where the designated Crew Leader for the sample collection must sign (legal signature) the statement of compliance with current LTRM P procedures. There must be a designated Crew L eader (the person who is responsible for decisions in difficult situations). This information is required but is not keyed.

6.2.3 Fish Measurement Sheet (EM TC 03/24/95)

Fish M easurement Sheets (A ppendix D) are used in the field and lab, depending on circumstances. F or fish that can be identified and enumerated in the field, all data (except for the Fish Collection Sheet bar code number, and [optionally] the number of fish recorded on the sheet [see below]) are recorded at the
collection site. At times, it might be necessary to preserve specimens and return them to the lab for positive identification and/or enumeration, and for this purpose and only this purpose, measurements are made and recorded on Fish M easurement Sheets in the lab. When preserving fish at the collection site, the page number and header block of an otherwise blank Fish M easurement Sheet must be completed and returned to the lab with the preserved specimens. When recording fish measurements in the lab, verify that the Fish M easurement Sheet header information, including the bar code number, matches the corresponding Fish Collection Sheet EXACTLY, and that the page numbers are in proper sequence.

Field name	Description and coding instructions Fish Collection Sheet Bar Code Number
Print the bar code number of the corresponding Fish Collection Sheet in the boxes provided in the top margin upon return to office (see Section 1.7 .2 , Pre-Submission QA/QC Procedures). V erify that the number re- corded is correct before sending data sheets to the data entry contractor. Note: Recording of collection sheet bar code numbers on all Fish Measurement Sheets is required; data sheets lacking bar code numbers will be returned to the field station.	
Page Number	Two-digit numeric field to record the page number of the Fish M easure- ment Sheet. Number multiple sheets consecutively. The page number of the last Fish M easurement Sheet for a sample collection must equal the entry for Number of Fish M easurement D ata Sheets on the corresponding
Fish Collection Sheet.	

M easurement Block

Species Name

Species Code Four-digit alphabetic field to record LTRMP species code identifiers. These species codes are cross-referenced to American Fisheries Society-accepted common and scientific names in A ppendix H. A SPE-
Space for noting species common names. This QA field is not keyed. Record an identifiable common name or abbreviation (other than the LTRM P fish code) of a common name, even if the species code is known, to preclude loss of data due to mistaken codes. This value does not have to be written on each row where multiple rows of a species occur. The first occurrence of a species' common name in a contiguous block should be recorded, but subsequent rows can be identified by a vertical line.
Field na

Length
(min)

TFS

Group Width
(GRP WTH)

W eight (g)

Fish Count

Four-digit numeric field to record individual length measurements or lower bounds (minima) of length groups. Record all measurements of individual lengths to the nearest 1 mm . Record lower bounds of length groups to the nearest 1 mm . This field is left blank only to designate unmeasured fish; otherwise, it must be completed.

One-digit alphabetic field to record system used for length measurement:
T or Blank = M aximum total length measurement; distance from anterior-most extreme of head (jaw closed) to most distant lobe of caudal fin (lobes compressed to achieve maximum length)
F = Fork length; distance from anterior-most extreme of head (jaw closed) to fork of caudal fin (tip of median fin rays)
S = Standard length; distance from anterior-most extreme of head (jaw closed) to caudal peduncle (posterior margin of hypural bone)

U se standard length for fish with damaged caudal fins. U se fork length for fishes such as paddlefish or sturgeon that have rigid caudal fins or variable-length caudal filaments.

One-digit numeric field to record the width, to the nearest 1 cm of a length group from within which fish were enumerated or bulk-weighed. For example, to record counts from fish in the 1-cm length interval from 290 to 299.9 mm , the Group M inimum is 290 and the Group W idth is 1.
RECORD GROUP WIDTHS FOR ALL ROWS THAT CONTAIN COUNTS OR BULK WEIGHTS FOR A SPECIFIED LENGTH GROUP. Leave this field blank for fish that are unmeasured or individually measured to the nearest 1 mm . Presence of group width values distinguishes individual measurements from bulk values.

Five-digit numeric field to record individual or aggregate weights (in grams). Individual weights are distinguished by the presence of a Group W idth value and should be measured to the nearest 1%. M easurement of weight with > 1\% measurement error defeats any purpose for measuring weight. W eights should be measured only for special purposes.

Five-digit numeric field to record counts of fish represented by the row of data. Fish Count is 1 for all individually measured lengths and weights and ≥ 1 for bulk counts. For example, if a particular fish was measured to the nearest 1 mm , then F ish C ount is 1 f ; if just one fish of a particular length group is encountered during length group enumeration, then Fish

Field name	Description and coding instructions					
	Count is also 1 for that length group. However, if 10 fish of a length group are encountered during group enumeration, then Fish Count is 10.					
W orking Tally	Space in which to tally fish during enumeration of fish by species or length group. This field is not keyed and is provided for scratch intermediate recording. Tally fish counts using the decimal enumeration scheme composed of dots and lines shown to the right. This scheme is efficient in that 10 can be recorded in the same amount Efficient decimal tally scheme (credit to M. Stopyro, Minnesota Department of Natural Resources). of space required to record 5 using the traditional system of four vertical lines crossed by one diagonal line. This scheme allows more than 100 fish to be recorded in a single W orking Tally field.					
Pathogen Code (PC)	One-digit field to record LTRM P fish health/pathogen codes (Table 3), as follows:					
	0 or blank = No visible abnormality					
	$\mathbf{2}=$ Skeletal abnormality					
	3 = Tumors					
	$4=$ Injury					
	$5=$ Skin/fin/eye$6=0$ ther					
Subproject	Two-digit field to record data needed to interpret User-D efined Fields (UDFs), as follows:					

First Box

1 = Aging structures (otoliths, scales, etc.) collected, specimen bar code
2 = Stomach contents collected
3 = Both aging structures and stomach contents collected
$0=$ Continued from previous line
Note: When the above codes are used, the specimen bar code number must be recorded in UDFs 1-10.

Second Box

0 = Tag implanted, number follows in UDF s 1-11, fish released
1 = Tag recovered, number follows in UDFs 1-11, fish released
2 = Tag recovered, number follows in UDFs 1-11, fish not released
3 = Tag scar visible, fish released

Field name

U ser-D efined Fields

Description and coding instructions
$4=$ Tag scar visible, fish not released
5 = Fin clipped, fin position follows in UDF 11
6 = Fin clip recovered, position follows in UDF 11, released
7 = Fin clip recovered, position follows in UDF 11, not released
Note: It may be rarely necessary to collect aging structures or stomachs and record a tag number. When this need arises, record the specimen (aging structure or stomach) information first, skip to the next line number on the data sheet, leaving everything to the left of the first Subproject box, record a zero in the first Subproject box, and then record tagging information as per above. This is necessary only if a tag number must be recorded; fin positions and specimens can be recorded on one line.

Twelve one-digit alphanumeric fields to record special information not routinely collected during standardized monitoring activities. The identities of UDFs are specific to particular project codes. If you need to record data in these fields, obtain a special Project Code from the EM TC. The descriptions of all U DF s are permanently recorded in a Project D etail File and can be referenced using the Project C ode.

Gill Nets: Record the mesh size code for the panel from which fish were extracted in UDF 12 as follows:

M esh size code	M esh size (stretch)
$\mathbf{1}$	$\mathbf{4 "}^{\prime \prime}$
$\mathbf{2}$	$\mathbf{6}^{\prime \prime}$
$\mathbf{3}$	$\mathbf{8}^{\prime \prime}$
$\mathbf{4}$	$\mathbf{1 0 "}$

When no fish are caught in a particular mesh size, record the mesh size code, a species code value of "NFSH" (no fish caught), and a count of "0" (zero).

Seines and Trawls: Record the haul number (seines 1-4; trawls 1-6) in UDF 12. If no fish are caught in a particular haul, record the haul number, a species code of "NFSH" (no fish caught), and a Fish Count of " 0 " (zero).

Fin Clipping: To record the positions of fin clips, record the fin position number, as shown in the diagram below, in UDF 11.

Numeric codes for fin clip positions

Specimen numbers: Record specimen (aging structure and/or stomach contents) bar code numbers in UDFs 1-10. The first box of the Subproject field must contain an appropriate code.

Tag numbers: Record tag numbers in UDFs1-11. The second box of the Subproject field must contain an appropriate code.

QA/QC Block

Recorder Code

N umber of Fish on This Sheet

Crew Leader Initials

The Quality Assurance/Quality Control block is used to record abbreviated documentation of compliance with LTRM P procedures.

Three-digit numeric field to record the LTRM P Crew Identification Number. These numbers are permanently assigned to LTRMP staff at each station. Record the code that was assigned to the crew member who recorded data on the Fish M easurement Sheet.

Four-digit field to record the total number of fish (sum of Fish Counts) recorded on this Fish M easurement Sheet.

Space for the designated Crew Leader (person responsible for decisions in difficult situations) to initial his or her first and last names.

6.3 Tips for Measuring and Recording Measurements

6.3.1 General

The Fish M easurement Sheet is flexible; it can be used to record data from several different enumeration and measurements tasks. One sheet may be used to record data from several species; when convenient (such as when catches are large), you may use separate (possibly several) data sheets to record measurements from each species. Suggestions for recording different types of measurements are provided in the following sections.

6.3.2 Recording Individual Measurements Without Regard to Subsampling Quotas

At times, it may be necessary to record individual lengths (and perhaps weights) from all fish of key species in small samples. This task is easy. Simply record measurements from individuals on successive lines. Group-width fields will be left blank, signifying individual measurement.

6.3.3 Recording Length Group Counts

Recording counts by length group is a frequently used method. Perhaps the easiest way to collect and record these data is to make an initial visual inspection of the catch. A pproximate length ranges of abundant species are estimated from visual observation of the catch. The recorder can then write in TLC minima for length groups apparent in the catch. A s fish are processed and categorized into length groups, counts are tallied in the W orking Tally field. When the last fish is processed, tallies are added and final fish counts are recorded. A s occasional fish are encountered that are outside the prerecorded set of length group minima, new length classes are added to the data sheet. It may be convenient to use one Fish M easurement Sheet for each species when catches are large.

6.3.4 Recording Subsampled Individual Measurements in the Quota Measurement Scheme

The most difficult processing task is obtaining and recording a quota of, say, the first k (usually $k=3$) individual lengths and weights from a larger sample in which fish will be classified by length group. This task requires obtaining both individual measurements and counts by length group. This process can be managed using the Fish Measurement Sheet. Set up the range of expected length groups and begin measuring. F or the first fish of a particular length group, write a tally mark in the working tally field, then record individual length and weight measurements and a fish count of one (1) on a new line. For convenience, you may want to record length group tallies on one sheet (for a species) and then record the successive individual lengths and weights beginning on a separate sheet. Repeat this process. After the k 'th fish of a length group is processed, circle those first k tally marks in the working tally field. When the $(k+1)$ 'th fish is encountered, begin tallying anew in the same working tally box. After all fish are processed, count the uncircled tally marks in each working tally box and record this number in the fish count field corresponding to that length group. The sum of the fish counts from length group tallies and individual measurements must equal the total number of fish captured.

7. QA/QC Procedures for Submission of Data for Entry

7.1 Overview

Properly completed data sheets are submitted to the data entry contractor on a weekly basis. This schedule ensures that the data are available for use on a timely basis and avoids development of a backlog. All complete sets of data sheets completed during a particular week should be submitted for entry during the same week or early the following week. A complete set of data sheets for a collection consists of the Fish Collection Sheet and all Fish Measurement Sheets, listing all fish caught for that collection. Only complete sets may be submitted to the data entry contractor. When, for any collection, fish are returned to the lab for identification, it will usually not be possible to complete all Fish M easurement Sheets during the same week the collection was made. When fish must be returned to the lab for identification, then the Fish Collection Sheet and any Fish Measurement Sheets recorded in the field are held at the field station until all Fish M easurement Sheets for that collection have been completed. It is only after the last labrecorded Fish Measurement Sheet has been completed that the Fish Collection Sheet and all Fish M easurement Sheets are sent to the data entry contractor.

A fter data have been recorded in the field and all fish that were returned to the lab have been processed and recorded, some additional QA/QC actions are needed to document collection of the data and to check for discrepancies that would delay processing unless resolved prior to data entry. The Field Station Fisheries Component Specialists are responsible for proper performance of these QA/QC steps. The purposes of these steps are to (1) provide information to verify that all data sheets are keyed by the data entry contractor, (2) document the chain-of-custody of the data, and (3) provide an additional safeguard against dissociation of corresponding Fish Collection Sheets and Fish M easurement Sheets because of discrepant header information.

7.2 Pre-Submission QA/QC Procedures

A s soon as possible after returning from a sampling venture, perform the following eight (8) steps:

1. Recheck all data sheets. Ensure that Header Block information from each Fish C ollection Sheet and all corresponding Fish M easurement Sheets match exactly.
2. A ffix one sticker from a pair of bar code stickers onto the space provided at the top of the first Fish Collection Sheet. Use bar codes in numeric order. Place the other sticker from this pair of stickers in the next available Collection Sheet Bar Code field on a Fish D ata Sheet Log (Revision EM TC 01/20/95; example in A ppendix J). These two bar codes must match.
3. Record the number of corresponding Fish Collection Sheets and Fish M easurement Sheets completed for this collection in the "Number of Sheets" field on the Fish Data Sheet Log. The number of Fish Collection Sheets is 1 if a Fish Collection Sheet is submitted to the data entry contractor. The number of F ish M easurement Sheets is the number being submitted to the data entry contractor with this batch. If no fish were caught, so that there are no corresponding Fish M easurement Sheets, record a zero (0).
4. On each and every F ish M easurement Sheet in the collection, write the bar code number of the corresponding Fish Collection Sheet (see item 2, above) into the boxes labeled "Fish Collection Sheet Bar Code N umber" in the upper margin. Continue this until all Fish M easurement Sheets in the collection have received bar code numbers.
5. On the Fish Data Sheet Log, record the Date Logged, Crew Code (identification of the person performing the logging), and your initials in the last three columns to document completion of QA/QC steps 1-5, above.
6. M ake one photocopy of all data sheets.
7. Continue as in Steps 1-5 for any additional collections.
8. When you are ready to submit data to the data entry contractor, check to see that Field Station Numbers and page numbers are recorded on the corresponding completed Fish D ata Sheet Logs, record the Date M ailed to Data Entry ${ }^{1}$ (bottom left corner of Log), and sign below. Then make two copies of the Fish D ata Sheet Log(s). Place the original Fish Data Sheet Log(s) on the top of the batch of data sheets and mail this entire set to the data entry contractor. K eep one copy of the F ish Data Sheet Log(s) on file at the field station and immediately mail the other copy to the EM TC.

8. References

A nderson, R. O., and S. J. Gutreuter. 1983. Length, weight, and associated structural indices. Pages 283-300 in L. A. Nielsen and D. L. Johnson, editors. Fisheries techniques. American Fisheries Society, Bethesda, M aryland.

Bunge, J., and M. Fitzpatrick. 1993. Estimating the number of species: A review. Journal of the A merican Statistical A ssociation 88:364-373.

Burkhardt, R. W., and S. Gutreuter. 1995. Improving electrofishing catch consistency by standardizing power. N orth A merican Journal of Fisheries M anagement 15:375-381.

Burkhardt, R. W., K. S. Lubinski, and J. L. Rasmussen. 1988. Fish. Pages 7.1-7.55 in Procedures manual of the Long Term Resource M onitoring Program for the Upper M ississippi River System. U. S. Fish and Wildlife Service, Environmental M anagement Technical Center, Onalaska, Wisconsin.

Carlander, H. B. 1954. A history of fish and fishing in the Upper M ississippi River. U pper M ississippi River Conservation Committee Special Publication. U pper M ississippi River Conservation Committee, Rock Island, Illinois.

Carline, R. F. 1986. A ssessment of fish populations and measurement of angler harvest: Indices as predictors of fish community traits. Pages $46-56$ in G. E. Hall and M. J. V an Den A vyle, editors.
${ }^{1}$ Field Station staff complete the box at the bottom of the Fish Data Sheet Log labeled Date Mailed to Data Entry, but not the three boxes to the right of this. The data entry contractor completes the boxes labeled Date Received by Data Entry and Date Sent to EMTC. EMTC staff sign for receipt of the log and data sheets in the box labeled Date Received by EMTC.

Reservoir fisheries management: Strategies for the 80 's. Southern Division, A merican Fisheries Society, Bethesda, M aryland.

Cochran, W. G. 1977. Sampling techniques, 3rd edition. John Wiley and Sons, New Y ork.
Fremling, C. R., J. L. Rasmussen, R. E. Sparks, S. P. Cobb, C. F. Bryan, and T. O. Claflin. 1989. M ississippi River fisheries: A case history. Pages 309-351 in D. P. Dodge, editor. Proceedings of the International Large River Symposium. Canadian Special Publication of Fisheries and Aquatic Sciences 106. Department of Fisheries and Oceans, Ottawa, Ontario.

Funk, J. L. 1957. Relative efficiency and selectivity of gear used in the study of fish populations in M issouri streams. Pages 31-43 in Symposium on Evaluation of Fish Populations in Warm Water Streams. Iowa State College, A mes, Iowa.

Gutreuter, S. 1992. Systemic features of fisheries of the U pper M ississippi River System: 1990 F isheries ComponentA nnual Report. Technical Report 92-T001, U.S. Fish and W ildlife Service, Environmental M anagement Technical Center, Onalaska, Wisconsin.

Gutreuter, S. 1993. The need for stratified spatially randomized sampling of fishes in the Long Term Resource M onitoring Program. Report to the LTRM P A nalysis Team. U.S. Fish and Wildlife Service, Environmental M anagement Technical Center, Onalaska, Wisconsin.

Gutreuter, S., and D. J. K rzoska. 1994. Quantifying precision of in situ length and weight measurements of fish. North A merican Journal of Fisheries M anagement 14:318-322.

Hayes, M. L. 1983. A ctive fish capture methods. Pages 123-145 in L. A. Nielsen and D. L. Johnson, editors. Fisheries techniques. A merican Fisheries Society, Bethesda, M aryland.

Hubert, W. A. 1983. Passive capture techniques. Pages 95-111 in L. A. Nielsen and D. L. Johnson, editors. Fisheries techniques. A merican Fisheries Society, Bethesda, M aryland.

Jackson, G. A., C. E. Korschgen, P. A. Thiel, J. M. Besser, D. W. Steffeck, and M. H. Bockenhauer. 1981. A long-term resource monitoring plan for the Upper M ississippi River System. V olume 1. Contract Report No. 14-16-009-81-903 for the Upper Mississippi River Basin Commission, Bloomington, M innesota.

Johnson, D. L., and L. A. Nielsen. 1983. Sampling considerations. Pages 1-21 in L. A. Nielsen and D. L. Johnson, editors. Fisheries techniques. A merican Fisheries Society, Bethesda, M aryland.

N orthcote, T. G. 1988. Fish in the structure and function of freshwater ecosystems: A "top-down" view. Canadian Journal of Fisheries and Aquatic Sciences 45:361-379.

Pitlo, J., Jr. 1987. Standing stock of fishes in the Upper M ississippi River. Fisheries section, U pper M ississippi River Conservation Committee, Rock Island, Illinois.

Rasmussen, J. L. 1979. A compendium of fishery information on the U pper M ississippi River. 2nd edition. U pper M ississippi River Conservation Committee, Rock Island, Illinois.

Reynolds, J. B. 1983. Electrofishing. Pages 147-163 in L. A. Nielsen and D. L. Johnson, editors. Fisheries techniques. A merican Fisheries Society, Bethesda, M aryland.

Robins, C. R., C. E. Bond, J. R. Brooker, E. A. Lachner, R. N. Lea, and W. B. Scott. 1991. Common and scientific names of fishes from the U nited States and C anada. 5th edition. Special Publication 20. A merican Fisheries Society, Bethesda, M aryland. 183 pp.

Starrett, W. C., and P. G. Barnikol. 1955. Efficiency and selectivity of commercial fishing devices used on the M ississippi River. Illinois Natural History Survey Bulletin 26:325-366.
U.S. Fish and Wildlife Service. 1992. Operating Plan for the U pper M ississippi River System Long Term Resource M onitoring Program. Environmental M anagement Technical Center, Onalaska, W isconsin, Revised September 1993. EM TC 91-P002. 179 pp. (NTIS \#PB94-160199)

V an Vooren, A. 1983. Distribution and relative abundance of Upper M ississippi River fishes. Fish Technical Section, U pper M ississippi River Conservation Committee, Rock Island, Illinois.

W ilcox, D. B. 1993. A n aquatic habitat classification system for the U pper M ississippi River System. U.S. Fish and Wildlife Service, Environmental M anagement Technical Center, Onalaska, W isconsin, M ay 1993. EM TC 93-T003. 9 pp. + Appendix A. (NTIS \# PB93-208981)

Appendix A

Long Term Resource Monitoring Program Electrofishing Boats

Table A-1. Parts list for Long Term Resource M onitoring Program electrofishing boats, excluding major components

Qty	Part	Qty	Part
1	20° Bezel	1	3-Prong Straight Blade Female
48	1/4-20 x 1" SS Bolts		Plug
1	Battery Box	1	3-Prong M ale Household Plug
1	Chair	2	$16^{\prime} \times 1 / 2$ " Chance Pole
1	Control Head	5	2-Prong Twist Lock Receptacle
1	Intake Screen	2	4-Prong Twist Lock Receptacle
1	Stern Light	1	3-Prong Twist Lock Receptacle
1	12-V V oltmeter	2	M omentary Closed Switch
1	Pedestal	40 ft	8\#W ire - Color: Black
1	W ater Pump	120 ft	12\# W ire - V arious Colors: Red,
20	8" x 3/4" M etal Screw		Y ellow, Green, Blue, Black
1	Overflow Tube	210 ft	16\# W ire - V arious Colors: Red,
40	1/4" Lock W ashers		Y ellow, Green, Blue, Black
1	Steering W heel	1	A mphenol Large Boot
2 box	Single Gang 4½" Outlet	1	5-amp Toggle Breaker
1 box	Single Gang W aterproof Hub Box	1	25-amp Toggle Breaker
4	Chance Pole Caps	1	10-amp Toggle Breaker
50 ft	3/4" PV C Conduit	1	A mphenol Cord Grip
50 ft	½" Thinwall Conduit	1	A mphenol Plug Housing
10 ft	3/4" Thinwall Conduit	12	Terminal Block Jumpers
90 ft	1" Thinwall Conduit	1	On-N one-On Toggle Switch
2 ft	3/4" W atertite Flex Conduit	1	12-Terminal Block
2	3/4" W atertite C onnector	2	4-Terminal Block
2	½" B ox Connector	3	5-amp Toggle Breaker
11 ft	600-V 3-W ay (12-3) Cord	2	Safety M ats (Electrical Discon-
4	½" Strain Relief Cord Grip		nect)
5	Conduit Cord Grip	4	Halogen Deck Light
7	W aterproof Receptacle Cover	1	Console
2	Cover for M omentary Switch	1	A mphenol 3-Prong Female Insert
1	Single Gang Blank Cover	18 ft	$1 / 22^{\prime \prime}$ Copper or Aluminum Tubing
1	3-Prong Twist Lock	20 ft	9/16" Stainless Steel Tubing
4	4-Prong Twist Lock	1	Bow Light

Table A-2. LTRMP standardized electrofishing power settings for various water conductivities and temperatures. Electrofishing at these power settings ensures potential transfer of $\mathbf{3 , 0 0 0}$ watts from water to fish (Burkhardt and Gutreuter 1995).

		Temperature										Temperature								
	Conductivity	5	10	15	20	25	30	35	40	45	Condu c-tivity	5	10	15	20	35	30	35	40	45
	25	8859	7896	7164	6588	6125	5745	5427	5159	4929	535	3493	3703	3924	4152	4385	4622	4862	5105	5349
	35	6809	6130	5615	5212	4889	4626	4407	4224	4068	545	3518	3734	3960	4193	4431	4674	4919	5166	5415
	45	5684	5164	4772	4467	4225	4029	3867	3733	3620	555	3543	3764	3996	4234	4478	4725	4975	5228	5482
	55	4980	4563	4251	4010	3820	3668	3545	3444	3360	565	3568	3795	4032	4275	4524	4777	5032	5289	5548
	65	4501	4158	3902	3707	3556	3436	3340	3263	3202	575	3593	3826	4068	4317	4571	4828	5088	5351	5615
	75	4159	3870	3658	3498	3375	3280	3206	3148	3104	585	3619	3857	4104	4358	4617	4880	5145	5412	5682
	85	3904	3658	3480	3348	3249	3174	3117	3076	3045	595	3644	3888	4140	4400	4664	4932	5202	5474	5748
	95	3710	3499	3348	3239	3159	3101	3060	3032	3013	605	3670	3919	4177	4442	4711	4984	5259	5536	5815
	105	3558	3376	3249	3159	3096	3053	3025	3008	3001	615	3696	3950	4214	4484	4758	5036	5316	5598	5882
	115	3438	3281	3174	3102	3053	3023	3006	3000	3003	625	3723	3982	4251	4526	4805	5088	5373	5660	5949
	125	3343	3207	3118	3060	3025	3006	3000	3004	3015	635	3749	4014	4288	4568	4852	5140	5430	5722	6016
	135	3266	3150	3076	3032	3008	3000	3004	3016	3036	745	3775	4045	4325	4610	4899	5192	5487	5785	6083
	145	3203	3105	3046	3014	3001	3002	3015	3036	3063	655	3802	4077	4362	4652	4947	5245	5545	5847	6150
>	155	3153	3070	3024	3003	3001	3012	3032	3061	3096	665	3829	4109	4399	4694	4994	5297	5602	5909	6218
	165	3113	3044	3010	3000	3007	3026	3055	3091	3134	675	3855	4142	4436	4737	5042	5349	5660	5971	6285
	175	3081	3025	3003	3002	3018	3045	3082	3125	3174	685	3882	4174	4474	4779	5089	5402	5717	6034	6352
	185	3056	3012	3000	3009	3033	3068	3112	3163	3218	695	3909	4206	4511	4822	5137	5455	5775	6096	6420
	195	3036	3004	3002	3020	3052	3095	3146	3203	3265	705	3937	4239	4549	4865	5185	5507	5832	6159	6487
	205	3021	3000	3008	3034	3074	3124	3182	3245	3314	715	3964	4271	4587	4908	5232	5560	5890	6222	6555
	215	3011	3000	3016	3051	3098	3155	3220	3290	3364	725	3991	4304	4624	4950	5280	5613	5948	6284	6622
	225	3004	3003	3028	3070	3125	3189	3260	3336	3417	735	4019	4337	4662	4993	5328	5666	6005	6347	6690
	235	3001	3009	3042	3092	3154	3224	3301	3384	3470	745	4046	4369	4700	5036	5376	5719	6063	6410	6757
	245	3000	3018	3059	3116	3184	3261	3345	3433	3525	755	4074	4402	4738	5079	5424	5772	6121	6472	6825
	255	3002	3028	3077	3141	3216	3299	3389	3483	3581	765	4102	4435	4776	5122	5472	5825	6179	6535	6893
	265	3006	3040	3097	3168	3250	3339	3435	3535	3638	775	4130	4468	4814	5165	5520	5878	6237	6598	6960
	275	3012	3054	3118	3196	3284	3380	3481	3587	3696	785	4158	4501	4852	5209	5568	5931	6295	6661	7028
	285	3019	3070	3141	3225	3320	3421	3529	3640	3755	795	4186	4534	4891	5252	5617	5984	6353	6724	7096
	295	3029	3087	3165	3256	3356	3464	3577	3694	3814	805	4214	4568	4929	5295	5665	6037	6411	6787	7164
	305	3039	3105	3190	3287	3394	3507	3626	3749	3874	815	4242	4601	4967	5338	5713	6090	6469	6850	7232

	Temperature										Temperature								
Conductivity	5	10	15	20	25	30	35	40	45	Condu c-tivity	5	10	15	20	35	30	35	40	45
315	3051	3124	3216	3319	3432	3551	3676	3804	3935	825	4270	4634	5006	5382	5761	6143	6527	6913	7299
325	3064	3145	3243	3353	3471	3596	3726	3860	3996	835	4298	4668	5044	5425	5810	6197	6586	6976	7367
335	3079	3166	3270	3386	3511	3642	3777	3916	4058	845	4326	4701	5083	5469	5858	6250	6644	7039	7435
345	3094	3188	3299	3421	3551	3687	3828	3973	4120	855	4355	4735	5121	5512	5907	6303	6702	7102	7503
355	3110	3211	3328	3456	3592	3734	3880	4030	4182	865	4383	4768	5160	5556	5955	6357	6760	7165	7571
365	3127	3234	3357	3491	3633	3781	3932	4087	4245	875	4412	4802	5198	5599	6004	6410	6819	7228	7639
375	3144	3258	3388	3528	3675	3828	3985	4145	4308	885	4440	4835	5237	5643	6052	6464	6877	7292	7707
385	3162	3283	3419	3564	3717	3876	4038	4204	4372	895	4469	4869	5276	5687	6101	6517	6935	7355	7775
395	3181	3308	3450	3601	3760	3924	4091	4262	4436	905	4498	4903	5314	5730	6149	6571	6994	7418	7843
405	3201	3334	3482	3639	3803	3972	4145	4321	4500	915	4526	4937	5353	5774	6198	6624	7052	7481	7912
415	3221	3360	3514	3677	3846	4021	4199	4380	4564	925	4555	4970	5392	5818	6247	6678	7110	7545	7980
425	3242	3387	3546	3715	3890	4070	4253	4440	4628	935	4584	5004	5431	5862	6295	6731	7169	7608	8048
435	3263	3414	3579	3753	3934	4119	4308	4499	4693	945	4613	5038	5470	5905	6344	6785	7227	7671	8116
445	3284	3442	3613	3792	3978	4168	4362	4559	4758	955	4642	5072	5509	5949	6393	6839	7286	7735	8184
455	3306	3470	3646	3831	4022	4218	4417	4619	4823	965	4670	5106	5548	5993	6442	6892	7344	7798	8253
465	3328	3498	3680	3870	4067	4268	4472	4679	4888	975	4699	5140	5587	6037	6490	6946	7403	7861	8321
475	3351	3527	3714	3910	4112	4318	4527	4740	4954	985	4728	5174	5626	6081	6539	7000	7462	7925	8389
485	3374	3555	3749	3950	4157	4368	4583	4800	5019	995	4758	5208	5665	6125	6588	7053	7520	7988	8457
495	3397	3584	3783	3990	4202	4419	4639	4861	5085	1005	4787	5242	5704	6169	6637	7107	7579	8052	8526
505	3421	3614	3818	4030	4248	4469	4694	4922	5151	1015	4816	5276	5743	6213	6686	7161	7637	8115	8594
515	3445	3643	3853	4071	4293	4520	4750	4983	5217	1025	4845	5311	5782	6257	6735	7215	7696	8179	8662
525	3469	3673	3889	4111	4339	4571	4806	5044	5283	1035	4874	5345	5821	6301	6784	7268	7755	8242	8731

Figure A-1. External configuration of a Long Term Resource Monitoring Program pulsed-DC electrofishing boat

Figure A-2 Circuit diagram for a Long Term Resource Monitoring Program pulsed-DC electrofishing boat

RELAY PANEL CONFIGURATION

TOGGLE SWITCHES CONFIGURATION

Figure A-3. Terminal block strip and toggle switch configuration for a L ong Term Resource M onitoring Program electrofishing boat

Appendix B

Mapping Electrical Fields Surrounding
 Long Term Resource Monitoring Program Electrofishing Boats

The electrical field emanating from all Long Term Resource Monitoring Program (LTRMP) electrofishing boats should be mapped annually and after repair of electrical components to ensure standardization.

The effective voltage gradient for capture of fish ranges from 0.1 to $1.0 \mathrm{~V} / \mathrm{cm}$ (Reynolds 1983). A voltage gradient of 0.1 to $1.0 \mathrm{~V} / \mathrm{cm}$ is generally sufficient to produce a voltage drop of 2 to 20 V over the length of a $20-\mathrm{cm}$ fish, enough to capture but not harm the fish.

The effective electrical field is measured with an oscilloscope and probe having two metal pins (electrodes) separated by a gap of 1 cm . The oscilloscope is used to measure the voltage gradient between the two pins. The voltage gradient in the electrical field must be at least $0.1 \mathrm{~V} / \mathrm{cm}$, as per the measurements shown in Figure B-1, below.

Figure B-1. Approximate shape of the effective ($0.1 \leq \mathrm{V} / \mathrm{cm} \leq 1.0$) electrical field around a Long Term Resource Monitoring Program electrofishing boat operating at the 3,000-W power goal. Shaded area is the effective field.

Appendix C

Fish Collection Sheet

Fish Collection Sheet

Long Term Resource Monitoring Program
Environmental Management Technical Center
575 Lester Avenue, Onalaska, Wisconsin 54650

Appendix D

Fish Measurement Sheet

Fish Measurement Sheet
Long Term Resource Monitoring Program
Environmental Management Technical Center
575 Lester Avenue, Onalaska, Wisconsin 54650

Fish Collection Sheet Bar Code Number
Page Number

Appendix E

Placement of Serially Connected Tandem Hoop Nets Prior to 1993

Appendix F

Original Long Term Resource Monitoring Program Fish Monitoring Design

O verview. The original sampling design (1989 through 1992) for the fisheries component of the L ong Term Resource M onitoring Program (LTRM P) was based on a fixed-point sampling program, wherein subjectively chosen permanent sampling stations were monitored through time. This appendix describes that original sampling design. Details of procedures used prior to 1991 were described by Burkhardt et al. (1988).

Fixed-point sampling is often used in biological and water quality field surveys, but is little used elsewhere. Fixed-point sampling is valid if interest is restricted only to the set of permanent sampling stations, and there is no interest in making inferences beyond those stations. D ata from the LTRM P are needed to detect trends within whole habitat classes and study reaches; fixed-point sampling cannot satisfy that need.

Fixed-point sampling has important features that distinguish it from more common randomized (fixed, stratified, clustered, or systematic) sampling (J ohnson and N ielson 1983). Because selection of the original sites is not random over LTRM P study reaches, it cannot be assumed that attributes or trends measured in the permanent sampling stations reflect attributes or trends in the larger LTRMP study reaches. Therefore, data collected from permanent sampling stations can be used as indices within sites but cannot be used to infer attributes or trends in the larger unit without assuming that the permanent stations are truly representative (Johnson and Nielson 1983). Critics of fixed-point sampling or the results of fixed-point sampling can always argue validly that the resultant data may be only artifacts of the initial site selection.

Sampling sites. Within LTRM P study reaches, permanent sampling sites were subjectively chosen to represent individual biologist's beliefs about each of seven target habitat types: channel border-unstructured, channel border-wing dam, side channel border, tailwater, main channel trough, contiguous backwater, and impounded. It should be noted that not all of the selected habitats exist in every study area. In cases where only some of the selected habitats are found, the amount of effort that would normally be applied to the nonexistent habitat is applied to existing target habitats or other habitats typical of the study area, depending on crew leader and EM TC discretion.

In the original LTRM P fish monitoring design, the permanent sampling sites were defined such that they contained two, but occasionally more, subareas that were treated as replicates (Fig. F-1). The replicate subareas were usually, but not always, contiguous (see Sample replications, below). In this scheme, replication is valid for estimation and testing of these composite sites. A n alternative interpretation of this arrangement is that the replicates constitute different sites within the habitat class, although they were not selected independently.

Seasonal distribution of fish collections. Three full sets of collections, plus replicates, were expended annually in all habitats: two sets in each habitat type from J une 15 to July 30, from A ugust 1 to September 15, and from September 16 to October 30.

Figure F-1. Spatial replication within sampling sites in the original Long Term Resource M onitoring Program fixed-site sampling design.

Prior to 1991, two sets of "community" collections were made from J une 15 through July 30 and from August 1 to September 15. Catches of all species were recorded during these first two time periods. A dditionally, during 1989 and 1990 "population" sampling was directed at channel catfish (Time Period 3), black crappie (Time Period 4), and sauger (Time Period 5). Catches of all other species were not reliably recorded in these collections. These "population" collections were described by Burkhardt et al. (1988).

Spatial distribution of fish collections. (See Table F-1)
a. Channel border-unstructured habitat. A unit of effort in channel border-unstructured habitat consisted of two 200-m, 15-min night electrofishing runs starting 30 min after sunset (nn); two hoop net sets (hh); four seine hauls (ssss), and four trawls (tttt) each for the upper and lower reaches (includes replicates).
b. Channel border-wing dam habitat. A unit of effort in channel border-wing dam habitat consisted of two electrofishing runs that encompass the front and back of the wing dam (recording time and distance) starting at or near 0700 CST (dd); two hoop net sets (hh); and two mini fyke net sets (mm) each for the upper and lower reaches (includes replicates).
c. Side channel border. A unit of effort in side channel border-unstructured habitat consisted of two $200-\mathrm{m}, 15-\mathrm{min}$ night electrofishing runs starting 30 min after sunset (nn); two hoop net sets (hh); and four seine hauls (ssss) each for the upper and lower reaches (includes replicates).
d. Tailwater. A unit of effort in tailwater habitat consisted of two night electrofishing runs starting 30 min after sunset; two hoop net sets (hh); two fyke sets (ff); two mini fyke net sets (mm); and four trawls (tttt) for the upper reach only (includes replicates).
e. M ain channel trough. A unit of effort in main channel trough habitat consisted of six trawls (tttttt) each for the upper and lower reaches (includes replicates).
f. Nonvegetated, backwater-contiguous habitat. A unit of effort in nonvegetated, backwater-contiguous habitat consisted of two 200-m, 15-min daytime electrofishing runs starting at or near 0700 CST (dd); two $200-\mathrm{m}, 15-\mathrm{min}$ night electrofishing runs starting 30 min after sunset (nn); two fyke net sets (ff); and two seine hauls (ss) each for the upper and lower reaches (includes replicates).

If a nonvegetated shoreline did not exist, two tandem fyke net sets (xx) and two mini fyke nets (mm) were used instead of ff and ss.
g. Vegetated, backwater-contiguous habitat. A unit of effort in vegetated, backwater-contiguous habitat consisted of two 200-m, 15-min daytime electrofishing runs starting at or near 0700 CST (dd); two fyke net sets (ff); and two mini fyke net sets (mm) (includes replicates).
h. Nonvegetated, impounded habitat. A unit of effort in nonvegetated, impounded habitat consisted of two 200-m, 15-min daytime electrofishing runs starting at or near 0700 CST (dd); two tandem fyke net sets (xx); and two tandem mini fyke net sets (yy) (deployed the same as the large tandem fyke net sets) for the lower reach only (includes replicates).
i. Vegetated, impounded habitat. A unit of effort in vegetated, impounded habitat consisted of two $200-\mathrm{m}, 15-\mathrm{min}$ daytime electrofishing runs starting at or near 0700 CST (dd); two fyke net sets (ff); and two mini fyke net sets (mm) for the lower reach only (includes replicates).

Sample replications. U nder certain circumstances, fish collections were to be treated as replications. The criteria necessary for collections to be considered replications were that:

1. Collections were made within the same habitat area and water levels.
2. Collections were made using the same method.
3. Collections were made within the same time period.
4. W ater conditions were similar for water depth, velocity, temperature, dissolved oxygen, turbidity, specific conductance, and cover.
5. Collection locations within the habitat area were considered random and independent. (H owever, locations were not, in fact, random.)

D uplicate sampling was necessary for evaluating sampling variance within habitat classes. A minimum of one duplicate per method was considered a standard requirement within all community units of effort. If time constraints did not permit a full sample effort, duplicate samples were sometimes omitted from regular sampling.

Design modification. During 1992 and early 1993, a review of this sampling design was completed. It was concluded that the original LTRM P fish sampling design was inadequate to obtain statistically valid and defensible estimates and tests of trends within habitat classes and study reaches. This conclusion was based on the limitations inherent in restriction of sampling to subjectively chosen permanent sampling sites and is a fundamental scientific and statistical principle that does not require empirical data for support. However, to assess the penalty in precision that might be incurred by incorporating stratified random sampling, an analysis of within- and among-site variance components was performed. The resulting analyses (Gutreuter 1993) suggested that adoption of stratified random sampling will not sacrifice precision. The LTRMP fish sampling design was modified during the winter and spring of 1993 to include stratified random sampling.

Table F-1. Annual fish collections, 1990-1992, and units of effort for one collection period per habitat by pool position and vegetation condition. Second letter indicates replicate sample and (no.) indicates collection code serial number.

	Upper reach				L ower reach			
Habitat category	Open		Vegetated		Open		V egetated	
Channel border unstructured	(01)	dd nn hh ssss tttt			(08)	dd nn hh SSSS tttt		
Channel border wing dam	(02)	dd hh mm			(09)	dd hh mm		
Side channel border unstructured	(03)	nn hh ssss			(10)	nn hh ssss		
T ailwater	(04)	nn hh ff mm tttt						
Channel trough	(05)	ttttt			(11)	ttttt		
Backwater-contiguous	(06)	$\begin{aligned} & \mathrm{dd} \\ & \mathrm{nn} \\ & \mathrm{ff} \\ & \mathrm{ss} \\ & \mathrm{yy} \end{aligned}$	(07)	dd ff mm SS yy	(12)	$\begin{aligned} & \mathrm{dd} \\ & \mathrm{nn} \\ & \mathrm{ff} \end{aligned}$	(13)	dd ff mm
Impounded					(14)	$\begin{aligned} & \mathrm{dd} \\ & \mathrm{xx} \\ & \mathrm{yy} \end{aligned}$	(15)	dd ff mm

Units of effort/gear code:
dd = two 200-m day electrofishing collections (with duplicates); nn = two 200-m night electrofishing collections; hh = two 48-h hoop net collections; ssss = four seine collections; tttt= four trawl hauls; $\mathrm{mm}=$ two 24-h mini fyke net collections; ff = two 24-h fyke net collections; $\mathrm{xx}=$ two 24 -h fyke nets set in tandem collections (may be interchanged with f in open water); and $\mathrm{yy}=$ two 24 -h mini fyke nets set in tandem collections (interchanges with sin impounded open habitats).

Appendix G

References to be Used as Keys in the Identification of Fish

Becker, G. C. 1983. Fishes of Wisconsin. University of Wisconsin Press, M adison, Wisconsin. 1,052 pp.

Pflieger, W. L. 1975. Fishes of M issouri. M issouri Department of Conservation, J efferson City, M issouri. 343 pp .

Robinson, H. W., and T. M. Buchanan. 1984. Fishes of Arkansas. The University of Arkansas Press, Fayetteville, Arkansas. 536 pp.

Appendix H

Long Term Resource Monitoring Program
 List of Fishes and Fish Codes

Table H-1. Long Term Resource M onitoring Program list of fishes and fish codes arranged alphabetically by common name. Nomenclature follows Robins et al. (1991).

Common name	Scientific name	Code
A ge-0 fish (young-of-the-year)	U nidentified	YOYF
A labama shad	Alosa alabamae	ALSD
Alewife	A. pseudoharengus	ALWF
Alligator gar	Lepisosteus spatula	ALGR
A merican brook lamprey	Lampetra appendix	ABLP
A merican eel	Anguilla rostrata	AMEL
Banded darter	E theostoma zonale	BDDR
Banded killifish	Fundulus diaphanus	BDKF
Banded pygmy sunfish	Elassoma zonatum	BPSF
Banded sculpin	Cottus carolinae	BDSP
Bantam sunfish	Lepomis symmetricus	BTSF
Bigeye chub	Notropis amblops	BECB
Bigeye shiner	N. boops	BESN
Bighead carp	H ypopthalmichthys nobilis	BHCP
Bigmouth buffalo	Ictiobus cyprinellus	BMBF
Bigmouth shiner	Notropis dorsalis	BM SN
Black buffalo	Ictiobus niger	BKBF
Black bullhead	Ameiurus melas	BKBH
Black crappie	Pomoxis nigromaculatus	BKCP
Black redhorse	M oxostoma duquesnei	BKRH
Black x white crappie	Pomoxis nigromaculatus x annularis	BCWC
Blackchin shiner	Notropis heterodon	BCSN
Blacknose dace	Rhinichthys atratulus	BNDC
Blacknose shiner	Notropis heterolepis	BNSN
Blackside darter	Percina maculata	BSDR
Blackspotted topminnow	Fundulus olivaceus	BPTM
Blackstripe topminnow	F. notatus	BTTM
Blacktail shiner	Cyprinella venusta	BTSN
Bloater	Coregonus hoyi	BLTR
Blue catfish	I ctalurus furcatus	BLCF
Blue sucker	C ycleptus elongatus	BUSK
Bluebreast darter	Etheostoma camurum	BBDR
Bluegill	Lepomis macrochirus	BLGL

Table H-1. C ontinued

Common name	Scientific name	Code
Bluegill \times longear sunfish	L. macrochirus x megalotis	BGLE
Bluegill x orangespotted sunfish	L. macrochirus x humilis	BGOS
Bluegill x redear sunfish	L. macrochirus x microlophus	BGRS
Bluegill x warmouth	L. macrochirus x gulosus	BGWM
Bluehead shiner	Notropis hubbsi	BHSN
Bluntnose darter	Etheostoma chlorosomum	BNDR
Bluntnose minnow	Pimephales notatus	BNM W
Bowfin	Amia calva	BWFN
Brassy minnow	H ybognathus hankinsoni	BSM W
Brindled madtom	Noturus miurus	BDM T
Brook silverside	Labidesthes sicculus	BKSS
Brook stickleback	Culaea inconstans	BKSB
Brook trout	Salvelinus fontinalis	BKTT
Brown bullhead	Ameiurus nebulosus	BNBH
Brown trout	Salmo trutta	BNTT
Bull shark	Carcharhinus leucas	BLSK
Bullhead minnow	Pimephales vigilax	BHMW
Burbot	Lota lota	BRBT
Carp x goldfish hybrid	Cyprinus carpio x auratus	C*GF
Central mudminnow	U mbra limi	CMM W
Central stoneroller	Campostoma anomalum	CLSR
C hain pickerel	E sox niger	CNPK
Channel catfish	Ictalurus punctatus	CNCF
C hannel shiner	Notropis wickliffi	CNSN
C hestnut lamprey	Ichthyomyzon castaneus	CNLP
Cisco	Coregonus artedi	CSCO
Coho salmon	Oncorhynchus kisutch	CHSM
Common carp	Cyprinus carpio	CARP
Common shiner	Luxilus cornutus	CMSN
Creek chub	Semotilus atromaculatus	CKCB
Creek chubsucker	Erimyzon oblongus	CKCS
Crystal darter	Ammocrypta asprella	CLDR
Cypress darter	Etheostoma proelaire	CPDR
D eepwater sculpin	M yoxocephalus thompsoni	DWSP
Dusky darter	Percina sciera	DYDR
E astern sand darter	Ammocrypta pellucida	ESDR
E merald shiner	Notropis atherinoides	ERSN
F antail darter	E theostoma flabellare	FTDR

Table H-1. C ontinued

Common name	Scientific name	Code
Fathead minnow	Pimephales promelas	FHM W
Flathead catfish	P ylodictis olivaris	FHCF
Flathead chub	Platygobio gracilis	FHCB
Flier	Centrarchus macropterus	FLER
Freckled madtom	Noturus nocturnus	FKM T
Freshwater drum	A plodinotus grunniens	FWDM
Ghost shiner	Notropis buchanani	GTSN
Gizzard shad	D orosoma cepedianum	GZSD
Golden redhorse	M oxostoma erythrurum	GDRH
Golden shiner	Notemigonus crysoleucas	GDSN
Goldeye	Hiodon alosoides	GDEY
Goldfish	Carassius auratus	GDFH
Grass carp	Ctenopharyngodon idella	GSCP
Grass pickerel	Esox americanus vermiculatus	GSPK
Gravel chub	Erimystax x-punctatus	GVCB
Greater redhorse	M oxostoma valenciennesi	GTRH
Green sunfish	Lepomis cyanellus	GNSF
Green sunfish x bluegill	L. cyanellus x macrochirus	GSBG
Green sunfish x pumpkinseed	L. cyanellus x gibbosus	GSPS
Green sunfish x unknown	L. cyanellus x sp.	GN*?
Green sunfish x warmouth	L. cyanellus x gulosus	GSW M
Green x orangespotted sunfish	L. cyanellus x humilis	GSOS
Green x redear sunfish	L. cyanellus x microlophus	GSRS
Greenside darter	E theostoma blennioides	GSDR
H arlequin darter	E. histrio	HQDR
Highfin carpsucker	Carpiodes velifer	HFCS
H orny head chub	Nocomis biguttatus	HHCB
Inland silverside	M enidia beryllina	IDSS
Iowa darter	Etheostoma exile	IODR
Ironcolor shiner	Notropis chalybaeus	ICSN
J ohnny darter	E theostoma nigrum	JY DR
L ake chub	Couesius plumbeus	LKCB
L ake chubsucker	E rimyzon sucetta	LKCS
L ake sturgeon	Acipenser fulvescens	LKSG
L argemouth bass	M icropterus salmoides	LMBS
L argescale stoneroller	Campostoma oligolepis	LSSR
L arval fish	U nidentified	LRVL

Table H-1. C ontinued

Common name	Scientific name	Code
Least brook lamprey	Lampetra aepyptera	LBLP
L east darter	E theostoma microperca	LTDR
L ogperch	Percina caprodes	LGPH
L ongear sunfish	Lepomis megalotis	LESF
Longnose dace	Rhinichthys cataractae	LNDC
L ongnose gar	Lepisosteus osseus	LNGR
L ongnose sucker	Catostomus catostomus	LNSK
Mimic shiner	Notropis volucellus	M M SN
M ississippi silverside	M enidia audens	M SSS
M ississippi silvery minnow	H ybognathus nuchalis	SV M W
M ooneye	Hiodon tergisus	M NEY
M ottled sculpin	Cottus bairdi	M DSP
M ountain madtom	Noturus eleutherus	M TM T
M ud darter	E theostoma asprigene	M DDR
M uskellunge	Esox masquinongy	M SK G
N inespine stickleback	Pungitius pungitius	NSSB
No fish caught	Nocatchus pisces	NFSH
N orthern brook lamprey	Ichthyomyzon fossor	NBLP
N orthern hog sucker	H ypentelium nigricans	NHSK
N orthern madtom	Noturus stigmosus	NTM T
N orthern pike	Esox lucius	NTPK
N orthern redbelly dace	Phoxinus eos	NRBD
N orthern studfish	Fundulus catenatus	NTSF
Orangespotted sunfish	Lepomis humilis	OSSF
Orangespotted x longear sunfish	L. humilis x megalotis	OSLE
Orangethroat darter	E theostoma spectabile	OTDR
Ozark minnow	Notropis nubilus	OZM W
Paddlefish	Polyodon spathula	PDFH
Pallid shiner	Notropis amnis	PDSN
Pallid sturgeon	Scaphirhynchus albus	PDSG
Pearl dace	M argariscus margarita	PLDC
Pirate perch	Aphredoderus sayanus	PRPH
Plains minnow	Hybognathus placitus	PNM W
Pugnose minnow	Opsopoeodus emiliae	PGM W
Pugnose shiner	Notropis anogenus	PNSN
Pumpkinseed	Lepomis gibbosus	PNSD
Pumpkinseed x bluegill	L. gibbosus x macrochirus	PSBG
Pumpkinseed x orangespotted sunfish	L. gibbosus x humilis	PSOS

Table H-1. C ontinued

Common name	Scientific name	Code
Pumpkinseed x warmouth	L. gibbosus x gulosus	PSW M
Quillback	Carpiodes cyprinus	QLBK
R ainbow darter	E theostoma caeruleum	RBDR
Rainbow smelt	0 smerus mordax	RBST
Rainbow trout	Oncorhynchus mykiss	RBTT
Red shiner	Cyprinella lutrensis	RDSN
Redear sunfish	Lepomis microlophus	RESF
Redear sunfish x warmouth	L. microlophus x gulosus	RSWM
Redfin shiner	Lythrurus umbratilis	RFSN
Ribbon shiner	Notropis fumeus	RBSN
River carpsucker	Carpiodes carpio	RVCS
River chub	Nocomis micropogon	RVCB
River darter	Percina shumardi	RRDR
River redhorse	M oxostoma carinatum	RVRH
River shiner	Notropis blennius	RVSN
Rock bass	Ambloplites rupestris	RKBS
Rosefin shiner	Lythrurus ardens	RSSN
Rosyface shiner	Notropis rubellus	RYSN
Sand shiner	N. stramineus	SNSN
Sauger	Stizostedion canadense	SGER
Sauger x walleye hybrid	S. canadense x vitreum	SGWE
Sea Iamprey	P etromyzon marinus	SELP
Shadow bass	Ambloplites ariommus	SWBS
Shorthead redhorse	Moxostoma macrolepidotum	SHRH
Shortnose gar	Lepisosteus platostomus	SNGR
Shovelnose sturgeon	Scaphirhynchus platorynchus	SNSG
Sicklefin chub	M acrhybopsis meeki	SFCB
Silver carp	H ypopthalmichthys molitrix	SVCP
Silver chub	M acrhybopsis storeriana	SVCB
Silver Iamprey	Ichthyomyzon unicuspis	SVLP
Silver redhorse	M oxostoma anisurum	SVRH
Silverband shiner	Notropis shumardi	SBSN
Silverjaw minnow	N. buccatus	SJM W
Skipjack herring	Alosa chrysochloris	SJHR
Slender madtom	Noturus exilis	SDM T
Slenderhead darter	Percina phoxocephala	SHDR
Slimy sculpin	Cottus cognatus	SYSP
Slough darter	E theostoma gracile	SLDR
Smallmouth bass	M icropterus dolomieu	SMBS

Table H-1. C ontinued

Common name	Scientific name	Code
Smallmouth buffalo	Ictiobus bubalus	SM BF
Southern redbelly dace	Phoxinus erythrogaster	SRBD
Speckled chub	M acrhybopsis aestivalis	SKCB
Spotfin shiner	Cyprinella spiloptera	SFSN
Spottail darter	Etheostoma squamiceps	SPDR
Spottail shiner	Notropis hudsonius	STSN
Spotted bass	Micropterus punctulatus	STBS
Spotted gar	Lepisosteus oculatus	STGR
Spotted sucker	M inytrema melanops	SPSK
Spotted sunfish	Lepomis punctatus	STSF
Spring cavefish	Chologaster agassizi	SGCF
Starhead topminnow	Fundulus dispar	SHTM
Steel color shiner	Cyprinella whipplei	SCSN
Stonecat	Noturus flavus	STCT
Striped bass	M orone saxatilis	SDBS
Striped mullet	Mugil cephalus	SPM T
Striped shiner	Luxilus chrysocephalus	SPSN
Striped x white bass	M orone saxatilis x chrysops	SBW B
Stripetail darter	Etheostoma kennicotti	STDR
Sturgeon chub	M acrhybopsis gelida	SGCB
Suckermouth minnow	Phenacobius mirabilis	SM M W
Tadpole madtom	Noturus gyrinus	TPM T
Threadfin shad	D orosoma petenense	TFSD
Tiger muskellunge	E sox masquinongy x lucius	M GNP
Trout perch	Percopsis omiscomaycus	TTPH
U nidentified	U nidentified	UNID
U nidentified E theostoma	E theostoma sp.	U-ET
U nidentified Lepomis	Lepomis sp.	U-LP
U nidentified Percidae	U nidentified Percidae	U-PC
U nidentified Percina	Percina sp.	U-PN
U nidentified Stizostedion	Stizostedion sp.	U-ST
U nidentified buffalo	Ictiobus sp.	U-BF
U nidentified carpsucker	Carpiodes sp.	U-CS
U nidentified chub	M acrhybopsis sp.	U-HY
U nidentified darter	P ercina or Etheostoma sp.	U-DR
U nidentified Iamprey	P etromyzontidae	U-LY
U nidentified minnow	U nidentified Cyprinidae	U-CY
U nidentified redhorse	M oxostoma sp.	U-RH
U nidentified shiner	Notropis sp.	U-NO
U nidentified sucker	U nidentified C atostomidae	U-CT

TableH-1. Continued

Common name	Scientific name	Code
U nidentified sunfish	U nidentified Centrarchidae	U-CN
W alleye	Stizostedion vitreum	WLYE
W armouth	Lepomis gulosus	WRMH
W eed shiner	Notropis texanus	WDSN
W estern mosquitofish	Gambusia affinis	M QTF
W estern sand darter	Ammocrypta clara	WSDR
W estern silvery minnow	H ybognathus argyritis	W SM W
W hite bass	M orone chrysops	WTBS
W hite catfish	Ameiurus catus	WTCF
W hite crappie	Pomoxis annularis	WTCP
W hite perch	Morone americana	WTPH
W hite sucker	Catostomus commersoni	WTSK
Y ellow bass	M orone mississippiensis	Y W BS
Y ellow bullhead	Ameiurus natalis	YLBH
Y ellow perch	Perca flavescens	Y W PH

Table H-2. L ong Term Resource M onitoring Program (LTRMP) list of fish codes and fishes arranged alphabetically by LTRMP code. Nomenclature follows R obins et al. (1990).

Code	Common name	Scientific name
ABLP	A merican brook lamprey	Lampetra appendix
ALGR	Alligator gar	Lepisosteus spatula
ALSD	A labama shad	Alosa alabamae
ALWF	Alewife	A. pseudoharengus
AMEL	A merican eel	Anguilla rostrata
BBDR	Bluebreast darter	Etheostoma camurum
BCSN	Blackchin shiner	Notropis heterodon
BCWC	Black x white crappie	Pomoxis nigromaculatus x annularis
BDDR	Banded darter	Etheostoma zonale
BDKF	Banded killifish	Fundulus diaphanus
BDM T	Brindled madtom	Noturus miurus
BDSP	Banded sculpin	Cottus carolinae
BECB	Bigeye chub	Notropis amblops
BESN	Bigeye shiner	N. boops
BGLE	Bluegill x longear sunfish	Lepomis macrochirus x megalotis
BGOS	Bluegill x orangespotted sunfish	L. macrochirus x humilis
BGRS	Bluegill x redear sunfish	L. macrochirus x microlophus
BGWM	Bluegill x warmouth	L. macrochirus x gulosus
BHCP	Bighead carp	Hypopthalmichthys nobilis
BHM W	Bullhead minnow	Pimephales vigilax
BHSN	Bluehead shiner	Notropis hubbsi
BKBF	Black buffalo	Ictiobus niger
BKBH	Black bullhead	Ameiurus melas
BKCP	Black crappie	Pomoxis nigromaculatus
BKRH	Black redhorse	Moxostoma duquesnei
BKSB	Brook stickleback	Culaea inconstans
BKSS	Brook silverside	Labidesthes sicculus
BKTT	Brook trout	Salvelinus fontinalis
BLCF	Blue catfish	Ictalurus furcatus
BLGL	Bluegill	Lepomis macrochirus
BLSK	Bull shark	Carcharhinus leucas
BLTR	Bloater	Coregonus hoyi
BM BF	Bigmouth buffalo	Ictiobus cyprinellus
BM SN	Bigmouth shiner	Notropis dorsalis
BNBH	Brown bullhead	Ameiurus nebulosus
BNDC	Blacknose dace	Rhinichthys atratulus
BNDR	Bluntnose darter	Etheostoma chlorosomum
BNM W	Bluntnose minnow	Pimephales notatus
BNSN	Blacknose shiner	Notropis heterolepis
BNTT	Brown trout	Salmo trutta

Table H-2. C ontinued

Code	Common name	Scientific name
BPSF	Banded pygmy sunfish	Elassoma zonatum
BPTM	Blackspotted topminnow	Fundulus olivaceus
BRBT	Burbot	Lota Iota
BSDR	Blackside darter	Percina maculata
BSM W	Brassy minnow	H ybognathus hankinsoni
BTSF	Bantam sunfish	Lepomis symmetricus
BTSN	Blacktail shiner	Cyprinella venusta
BTTM	Blackstripe topminnow	Fundulus notatus
BUSK	Blue sucker	Cycleptus elongatus
BWFN	Bowfin	Amia calva
C*GF	Carp x goldfish hybrid	Cyprinus carpio x auratus
CARP	Common carp	C. carpio
CHSM	Coho salmon	Oncorhynchus kisutch
CKCB	Creek chub	Semotilus atromaculatus
CKCS	Creek chubsucker	Erimyzon oblongus
CLDR	Crystal darter	Ammocrypta asprella
CLSR	Central stoneroller	Campostoma anomalum
CM M W	Central mudminnow	U mbra limi
CM SN	Common shiner	Luxilus cornutus
CNCF	Channel catfish	Ictalurus punctatus
CNLP	C hestnut lamprey	Ichthyomyzon castaneus
CNPK	Chain pickerel	Esox niger
CNSN	Channel shiner	Notropis wickliffi
CPDR	Cypress darter	Etheostoma proelaire
CSCO	Cisco	Coregonus artedi
DWSP	Deepwater sculpin	M yoxocephalus thompsoni
DYDR	Dusky darter	Percina sciera
ERSN	Emerald shiner	Notropis atherinoides
ESDR	E astern sand darter	Ammocrypta pellucida
FHCB	Flathead chub	Platygobio gracilis
FHCF	Flathead catfish	P ylodictis olivaris
FHM W	F athead minnow	Pimephales promelas
FKM T	Freckled madtom	Noturus nocturnus
FLER	Flier	Centrarchus macropterus
FTDR	F antail darter	Etheostoma flabellare
FWDM	Freshwater drum	Aplodinotus grunniens
GDEY	Goldeye	Hiodon alosoides

Table H-2. C ontinued

Code	Common name	Scientific name
GDFH	Goldfish	Carassius auratus
GDRH	Golden redhorse	Moxostoma erythrurum
GDSN	Golden shiner	Notemigonus crysoleucas
GN*?	Green sunfish x unknown	Lepomis cyanellus x sp.
GNSF	Green sunfish	L cyanellus
GSBG	Green sunfish x bluegill	L. cyanellus x macrochirus
GSCP	Grass carp	Ctenopharyngodon idella
GSDR	Greenside darter	Etheostoma blennioides
GSOS	Green x orangespotted sunfish	Lepomis cyanellus x humilis
GSPK	Grass pickerel	Esox americanus vermiculatus
GSPS	Green sunfish x pumpkinseed	Lepomis cyanellus x gibbosus
GSRS	Green x redear sunfish	L. cyanellus x microlophus
GSW M	Green sunfish x warmouth	L. cyanellus x gulosus
GTRH	Greater redhorse	Moxostoma valenciennesi
GTSN	G host shiner	Notropis buchanani
GVCB	Gravel chub	Erimystax x-punctatus
GZSD	Gizzard shad	Dorosoma cepedianum
HFCS	Highfin carpsucker	Carpiodes velifer
HHCB	Hornyhead chub	Nocomis biguttatus
HQDR	Harlequin darter	Etheostoma histrio
ICSN	Ironcolor shiner	Notropis chalybaeus
IDSS	Inland silverside	M enidia beryllina
IODR	Iowa darter	Etheostoma exile
JYDR	Johnny darter	E. nigrum
LBLP	L east brook lamprey	Lampetra aepyptera
LESF	L ongear sunfish	Lepomis megalotis
LGPH	Logperch	Percina caprodes
LKCB	L ake chub	Couesius plumbeus
LKCS	L ake chubsucker	Erimyzon sucetta
LKSG	L ake sturgeon	Acipenser fulvescens
LMBS	L argemouth bass	Micropterus salmoides
LNDC	L ongnose dace	Rhinichthys cataractae
LNGR	L ongnose gar	Lepisosteus osseus
LNSK	L ongnose sucker	Catostomus catostomus
LRVL	L arval fish	U nidentified
LSSR	L argescale stoneroller	Campostoma oligolepis
LTDR	L east darter	Etheostoma microperca

Table H-2. C ontinued

Code	Common name	Scientific name
M DDR	M ud darter	E. asprigene
M DSP	M ottled sculpin	Cottus bairdi
M GNP	Tiger muskellunge	Esox masquinongy x lucius
M M SN	M imic shiner	Notropis volucellus
M NEY	M ooneye	Hiodon tergisus
M QTF	W estern mosquitofish	Gambusia affinis
M SKG	M uskellunge	Esox masquinongy
M SSS	M ississippi silverside	M enidia audens
MTM T	M ountain madtom	Noturus eleutherus
NBLP	N orthern brook lamprey	Ichthyomyzon fossor
NFSH	No fish caught	Nocatchus pisces
NHSK	N orthern hog sucker	Hypentelium nigricans
NRBD	N orthern redbelly dace	Phoxinus eos
NSSB	N inespine stickleback	Pungitius pungitius
NTM T	N orthern madtom	Noturus stigmosus
NTPK	N orthern pike	Esox lucius
NTSF	N orthern studfish	Fundulus catenatus
OSLE	Orangespotted x longear sunfish	Lepomis humilis x megalotis
OSSF	Orangespotted sunfish	L. humilis
OTDR	Orangethroat darter	Etheostoma spectabile
OZM W	Ozark minnow	Notropis nubilus
PDFH	Paddlefish	Polyodon spathula
PDSG	Pallid sturgeon	Scaphirhynchus albus
PDSN	Pallid shiner	Notropis amnis
PGM W	Pugnose minnow	Opsopoeodus emiliae
PLDC	Pearl dace	Margariscus margarita
PNM W	Plains minnow	Hybognathus placitus
PNSD	Pumpkinseed	Lepomis gibbosus
PNSN	Pugnose shiner	Notropis anogenus
PRPH	Pirate perch	Aphredoderus sayanus
PSBG	Pumpkinseed x bluegill	Lepomis gibbosus x macrochirus
PSOS	Pumpkinseed x orangespotted sunfish	L. gibbosus x humilis
PSW M	Pumpkinseed x warmouth	L. gibbosus x gulosus
QLBK	Quillback	Carpiodes cyprinus
RBDR	Rainbow darter	Etheostoma caeruleum
RBSN	Ribbon shiner	Notropis fumeus
RBST	Rainbow smelt	0 smerus mordax

Table H-2. C ontinued

Code	Common name	Scientific name
RBTT	Rainbow trout	Oncorhynchus mykiss
RDSN	Red shiner	Cyprinella lutrensis
RESF	Redear sunfish	Lepomis microlophus
RFSN	Redfin shiner	Lythrurus umbratilis
RKBS	Rock bass	Ambloplites rupestris
RRDR	River darter	Percina shumardi
RSSN	Rosefin shiner	Lythrurus ardens
RSWM	Redear sunfish x warmouth	L. microlophus x gulosus
RVCB	River chub	Nocomis micropogon
RVCS	River carpsucker	Carpiodes carpio
RVRH	River redhorse	M oxostoma carinatum
RVSN	River shiner	Notropis blennius
RY SN	Rosyface shiner	N. rubellus
SBSN	Silverband shiner	N. shumardi
SBW B	Striped x white bass	M orone saxatilis x chrysops
SCSN	Steel color shiner	Cyprinella whipplei
SDBS	Striped bass	M orone saxatilis
SDM T	Slender madtom	Noturus exilis
SELP	Sea Iamprey	Petromyzon marinus
SFCB	Sicklefin chub	M acrhybopsis meeki
SFSN	Spotfin shiner	Cyprinella spiloptera
SGCB	Sturgeon chub	Macrhybopsis gelida
SGCF	Spring cavefish	Chologaster agassizi
SGER	Sauger	Stizostedion canadense
SGWE	Sauger x walleye hybrid	S. canadense x vitreum
SHDR	Slenderhead darter	Percina phoxocephala
SHRH	Shorthead redhorse	Moxostoma macrolepidotum
SHTM	Starhead topminnow	Fundulus dispar
SJHR	Skipjack herring	Alosa chrysochloris
SJM W	Silverjaw minnow	Notropis buccatus
SKCB	Speckled chub	M acrhybopsis aestivalis
SLDR	Slough darter	Etheostoma gracile
SM BF	Smallmouth buffalo	Ictiobus bubalus
SM BS	Smallmouth bass	Micropterus dolomieu
SM M W	Suckermouth minnow	Phenacobius mirabilis
SNGR	Shortnose gar	Lepisosteus platostomus
SNSG	Shovelnose sturgeon	Scaphirhynchus platorynchus
SNSN	Sand shiner	Notropis stramineus
SPDR	Spottail darter	Etheostoma squamiceps
SPM T	Striped mullet	Mugil cephalus
SPSK	Spotted sucker	Minytrema melanops

Table H-2. Continued

Code	Common name	Scientific name
SPSN	Striped shiner	Luxilus chrysocephalus
SRBD	Southern redbelly dace	Phoxinus erythrogaster
STBS	Spotted bass	Micropterus punctulatus
STCT	Stonecat	Noturus flavus
STDR	Stripetail darter	Etheostoma kennicotti
STGR	Spotted gar	Lepisosteus oculatus
STSF	Spotted sunfish	Lepomis punctatus
STSN	Spottail shiner	Notropis hudsonius
SVCB	Silver chub	M acrhybopsis storeriana
SVCP	Silver carp	Hypopthalmichthys molitrix
SVLP	Silver lamprey	Ichthyomyzon unicuspis
SV M W	M ississippi silvery minnow	Hybognathus nuchalis
SVRH	Silver redhorse	Moxostoma anisurum
SWBS	Shadow bass	Ambloplites ariommus
SY SP	Slimy sculpin	Cottus cognatus
TFSD	Threadfin shad	Dorosoma petenense
TPM T	Tadpole madtom	Noturus gyrinus
TTPH	Trout perch	Percopsis omiscomaycus
U-BF	Unidentified buffalo	Ictiobus sp.
U-CN	U nidentified sunfish	U nidentified Centrarchidae
U-CS	U nidentified carpsucker	Carpiodes sp.
U-CT	U nidentified sucker	U nidentified C atostomidae
U-CY	U nidentified minnow	U nidentified Cyprinidae
U-DR	U nidentified darter	Percina or Etheostoma sp.
U-ET	U nidentified Etheostoma	E theostoma sp.
U-HY	U nidentified chub	M acrhybopsis sp.
U-LP	Unidentified Lepomis	Lepomis sp.
U-LY	U nidentified lamprey	P etromyzontidae
U-NO	U nidentified shiner	Notropis sp.
U-PC	U nidentified Percidae	U nidentified Percidae
U-PN	U nidentified Percina	Percina sp.
U-RH	U nidentified redhorse	Moxostoma sp.
U-ST	U nidentified Stizostedion	Stizostedion sp.
UNID	U nidentified	U nidentified
WDSN	W eed shiner	Notropis texanus
WLYE	W alleye	Stizostedion vitreum
WRMH	W armouth	Lepomis gulosus
WSDR	W estern sand darter	Ammocrypta clara
WSM W	W estern silvery minnow	Hybognathus argyritis

Table H-2. Continued

Code	Common name	Scientific name
WTBS	W hite bass	M orone chrysops
WTCF	W hite catfish	Ameiurus catus
WTCP	W hite crappie	Pomoxis annularis
WTPH	W hite perch	M orone americana
WTSK	W hite sucker	Catostomus commersoni
YLBH	Y ellow bullhead	Ameiurus natalis
YOYF	A ge-0 fish (young-of-the-year)	U nidentified
YWBS	Y ellow bass	M orone mississippiensis
YWPH	Y ellow perch	Perca flavescens

Table H-3. List of obsolete L ong Term Resource M onitoring Program fish codes. These codes have been replaced or deleted because of nomenclature changes.

Code	Common name	Scientific name
CM SR	Central stoneroller (OBS)	Campostoma anomalum
WTSG	Pallid sturgeon (OBS)	Scaphirhynchus albus

Table H-4. L ong Term Resource M onitoring Program list of fishes, arranged phylogenetically by family, then alphabetically by genus and species. Hybrids are listed after respective genera. Nomenclature follows Robins et al. (1990).

Common name	Scientific name

Chestnut lamprey
N orthern brook lamprey
Silver Iamprey
L east brook lamprey
A merican brook lamprey
Sea lamprey
Family Petromyzontidae

Family Carcharhinidae
Bull shark

L ake sturgeon
Pallid sturgeon
Shovelnose sturgeon

Paddlefish

Spotted gar
L ongnose gar
Shortnose gar
Alligator gar
Bowfin Family Amiidae

Goldeye
M ooneye

A merican eel

A labama shad
Skipjack herring
A lewife

Family Hiodontidae

Ichthyomyzon castaneus
I. fossor
I. unicuspis

Lampetra aepyptera
L. appendix

Petromyzon marinus

Carcharhinus leucas

Family A cipenseridae

Family Polyodontidae

Family Lepisosteidae
Polyodon spathula

Lepisosteus oculatus
L. osseus
L. platostomus
L. spatula

Amia calva

Hiodon alosoides
H. tergisus

Family Anguillidae

Family Clupeidae

Anguilla rostrata

Alosa alabamae
A. chrysochloris
A. pseudoharengus

Table H-4. C ontinued

Common name

Scientific name

Gizzard shad
Threadfin shad

Central stoneroller
L argescale stoneroller
Goldfish
Lake chub
Grass carp
Red shiner
Spotfin shiner
Blacktail shiner
Steelcolor shiner
Common carp
Carp x goldfish hybrid
Gravel chub
W estern silvery minnow
Brassy minnow
M ississippi silvery minnow
Plains minnow
Silver carp
Bighead carp
Striped shiner
Common shiner
Rosefin shiner
Redfin shiner
Speckled chub
Sturgeon chub
Sicklefin chub
Silver chub
Pearl dace
H ornyhead chub
River chub
Golden shiner
Pallid shiner
Bigeye chub
Pugnose shiner
E merald shiner
River shiner
Bigeye shiner
Silverjaw minnow
G host shiner

Dorosoma cepedianum
D. petenense

Family C yprinidae

Campostoma anomalum
C. oligolepis

Carassius auratus
Couesius plumbeus
Ctenopharyngodon idella
Cyprinella lutrensis
C. spiloptera
C. venusta
C. whipplei

Cyprinus carpio
C. carpio x auratus

Erimystax x-punctatus
Hybognathus argyritis
H. hankinsoni
H. nuchalis
H. placitus

Hypopthalmichthys molitrix
H. nobilis

Luxilus chrysocephalus
L. cornutus

Lythrurus ardens
L. umbratilis

M acrhybopsis aestivalis
M. gelida
M. meeki
M. storeriana

Margariscus margarita
Nocomis biguttatus
N. micropogon
Notemigonus crysoleucas
Notropis amnis
N. amblops
N. anogenus
N. atherinoides
N. blennius
N. boops
N. buccatus
N. buchanani

Table H-4. Continued

Common name

Scientific name

Ironcolor shiner
N. chalybaeus

Bigmouth shiner
N. dorsalis

Ribbon shiner
Blackchin shiner
N. fumeus
N. heterodon

Blacknose shiner
N. heterolepis

Bluehead shiner
N. hubbsi
Spottail shiner
N. hudsonius

Ozark minnow
N. nubilus
Rosyface shiner
Silverband shiner
Sand shiner
W eed shiner
Mimic shiner
Channel shiner
Pugnose minnow
Suckermouth minnow
N orthern redbelly dace
Southern redbelly dace
Bluntnose minnow
Fathead minnow
Bullhead minnow
Flathead chub
Blacknose dace
Longnose dace
Creek chub

Family C atostomidae

River carpsucker
Quillback
Highfin carpsucker
L ongnose sucker
W hite sucker
Blue sucker
Creek chubsucker
L ake chubsucker
N orthern hog sucker
Smallmouth buffalo
Bigmouth buffalo
Black buffalo
Spotted sucker
Silver redhorse
River redhorse
N. shumardi
N. stramineus
N. texanus

N . volucellus
N. wickliffi

Opsopoeodus emiliae
Phenacobius mirabilis
Phoxinus eos
P. erythrogaster

Pimephales notatus
P. promelas
P. vigilax

Platygobio gracilis
Rhinichthys atratulus
R. cataractae

Semotilus atromaculatus

Carpiodes carpio
C. cyprinus
C. velifer

Catostomus catostomus
C. commersoni

Cycleptus elongatus
Erimyzon oblongus
E. sucetta

Hypentelium nigricans
Ictiobus bubalus
I. cyprinellus
I. niger

Minytrema melanops
Moxostoma anisurum
M. carinatum

Table H-4. C ontinued

Common name

Black redhorse
Golden redhorse
Shorthead redhorse
Greater redhorse

Scientific name
M. duquesnei
M. erythrurum
M. macrolepidotum
M. valenciennesi

W hite catfish
Black bullhead
Y ellow bullhead
Brown bullhead
Blue catfish
Channel catfish
M ountain madtom
Slender madtom
Stonecat
Tadpole madtom
Brindled madtom
Freckled madtom
N orthern madtom
Flathead catfish

Grass pickerel
vermiculatus
N orthern pike
M uskellunge
Tiger muskellunge
Chain pickerel

Central mudminnow

Rainbow smelt

Cisco
Bloater
Coho salmon
Rainbow trout
Brown trout
Brook trout

Family Osmeridae

Family Salmonidae

Family Ictaluridae

Ameiurus catus
A. melas
A. natalis
A. nebulosus
Ictalurus furcatus
I. punctatus
Noturus eleutherus
N. exilis
N. flavus
N. gyrinus
N. miurus
N. nocturnus
N. stigmosus
Pylodictis olivaris

Family Esocidae

Family Umbridae

Coregonus artedi
C. hoyi

Oncorhynchus kisutch
0. mykiss

Salmo trutta
Salvelinus fontinalis

Table H-4. C ontinued
Common name
Trout perch Family Percopsidae

Family Aphredoderidae

Pirate perch

Spring cavefish
Family A mblyopsidae

Family Gadidae
Burbot

N orthern studfish
Banded killifish
Starhead topminnow
Blackstripe topminnow
Blackspotted topminnow

W estern mosquitofish

Brook silverside
M ississippi silverside
Inland silverside
Brook stickleback
N inespine stickleback
Brook stickleback
N inespine stickleback

Family Poeciliidae

Family Atherinidae

Family Cyprinodontidae

Lota Iota

Fundulus catenatus
F. diaphanus
F. dispar
F. notatus
F. olivaceus

Family G asterosteidae

Gambusia affinis

Labidesthes sicculus
Menidia audens
M. beryllina

M ottled sculpin
B anded sculpin
Slimy sculpin
D eepwater sculpin

W hite perch
W hite bass
Y ellow bass
Striped bass

Family Percichthyidae

Family Cottidae
Culaea inconstans
Pungitius pungitius

Cottus bairdi
C. carolinae
C. cognatus

M yoxocephalus thompsoni

Morone americana
M. chrysops
M. mississippiensis
M. saxatilis

Table H-4. C ontinued

Common name

Striped x white bass

Scientific name

M. saxatilis x chrysops

Family Centrarchidae

Shadow bass
Rock bass
Flier
Banded pygmy sunfish
Green sunfish
Pumpkinseed
W armouth
Orangespotted sunfish
Bluegill
Longear sunfish
Redear sunfish
Spotted sunfish
Bantam sunfish
Green sunfish x pumpkinseed
Green sunfish x warmouth
Green x orangespotted sunfish
Green sunfish x bluegill
Green x redear sunfish
Green sunfish x unknown
Pumpkinseed x warmouth
Pumpkinseed x orangespotted sunfish
Pumpkinseed x bluegill
Orangespotted x longear sunfish
Bluegill x warmouth
Bluegill x orangespotted sunfish
Bluegill x longear sunfish
Bluegill x redear sunfish microlophus
Redear sunfish x warmouth
Smallmouth bass
Spotted bass
L argemouth bass
W hite crappie
Black crappie
Black x white crappie
annularis

Ambloplites ariommus
A. rupestris

Centrarchus macropterus
Elassoma zonatum
Lepomis cyanellus
L. gibbosus
L. gulosus
L. humilis
L. macrochirus
L. megalotis
L. microlophus
L. punctatus
L. symmetricus
L. cyanellus x gibbosus
L. cyanellus x gulosus
L. cyanellus x humilis
L. cyanellus x macrochirus
L. cyanellus x microlophus
L. cyanellus x sp.
L. gibbosus x gulosus
L. gibbosus x humilis
L. gibbosus x macrochirus
L. humilis x megalotis
L. macrochirus x gulosus
L. macrochirus x humilis
L. macrochirus x megalotis
L. macrochirus x
L. microlophus x gulosus

M icropterus dolomieu
M. punctulatus
M. salmoides

Pomoxis annularis
P. nigromaculatus
P. nigromaculatus x

Table H-4. C ontinued

Common name

Family Percidae

Crystal darter
W estern sand darter
E astern sand darter
M ud darter
Greenside darter
Rainbow darter
Bluebreast darter
Bluntnose darter
Iowa darter
F antail darter
Slough darter
Harlequin darter
Stripetail darter
L east darter
Johnny darter
Cypress darter
Orangethroat darter
Spottail darter
Banded darter
Y ellow perch
L ogperch
Blackside darter
Slenderhead darter
Dusky darter
River darter
Sauger
W alleye
Sauger x walleye hybrid

Freshwater drum

Striped mullet

Family Sciaenidae

Family Mugilidae

Scientific name

Ammocrypta asprella
A. clara
A. pellucida

Etheostoma asprigene
E. blennioides
E. caeruleum
E. camurum
E. chlorosomum
E. exile
E. flabellare
E. gracile
E. histrio
E. kennicotti
E. microperca
E. nigrum
E. proelaire
E. spectabile
E. squamiceps
E. zonale

Perca flavescens
Percina caprodes
P. maculata
P. phoxocephala
P. sciera
P. shumardi

Stizostedion canadense
S. vitreum
S. canadense x vitreum

Aplodinotus grunniens

Mugil cephalus

Appendix I

Fish Identification Expert

Robert H rabik
Open River Field Station
M issouri Department of Conservation
3815 E ast Jackson Boulevard
Jackson, M O 63755

Appendix J

Fish Data Sheet Log

Fish Data Sheet Log
Long Term Resource Monitoring Program
Environmental Management Technical Center
575 Lester Avenue, Onalaska, WI 54650

Collection Sheet Bar Code	Number of Sheets		Date Logged		Crew Code	Initials
	Collection	Measurement				
	$\square 0$ or 1	\square	\square		\square	-
	$\square 0$ or 1	\square	\square	$\square \square \square$	\square	
	$\square 0$ or 1	\square		$\begin{array}{l\|l\|} \hline & \square \\ \hline \end{array}$	\square	
	$\square 0$ or 1	\square	\square	$\begin{array}{l\|l\|} \hline & \square \\ \hline \end{array}$	$\square \square$	-
	$\square 0$ or 1	\square	\square		$\square \square$	
	$\square 0$ or 1	\square	\square		$\square \square$	
	$\square 0$ or 1	\square	$\square \square$		$\square \square$	
	$\square 0$ or 1	\square	\square	$\begin{array}{\|l\|l\|l} \hline & \square \\ \hline \end{array}$	$\begin{array}{\|l\|l} \square & \square \\ \hline \end{array}$	
	$\square 0$ or 1	\square	\square			
	$\square 0$ or 1	\square		$\begin{array}{\|l\|l\|l} \hline & \square \\ \hline \end{array}$	$\square \square \square$	-

Field Station: Complete QA/QC procedures for submission of data for entry when logging data sheets. Make two (2) copies of this sheet. Use this original as a cover for batch submitted for entry. Mail one copy directly to EMTC and file the remaining one.

The Long Term Resource M onitoring Program (LTRMP) for the U pper M ississippi River System was authorized under the W ater Resources Development Act of 1986 as an element of the Environmental M anagement Program. The mission of the LTRMP is to provide river managers with information to maintain the U pper M ississippi River System as a sustainable large river ecosystem given its multiple-use character. The LTRMP is a cooperative effort by the National Biological Service, the U.S. A rmy Corps of Engineers, and the States of Illinois, Iowa, M innesota, M issouri, and W isconsin.

