Study Area


The focus of our modeling effort was Bird Conservation Region 23 (hereafter BCR23), the Prairie-Hardwood Transition (GRAPHIC HERE studyarea_lulc.bmp).  This BCR lies entirely within USFWS Region 3, overlaps three FWS ecosystem regions, and is virtually identical to Partners-in-Flight Physiographic Area 16 (Upper Great Lakes Plain, http://www.blm.gov/wildlife/pifplans.htm).  BCR23 occupies 230,111 km2, stretching from central Minnesota through central and southern Wisconsin and Michigan, including small sections of northeastern Iowa, and northern Illinois and Indiana; Lake Michigan bisects the region.  This region was chosen because of its diverse land uses, both historical and current.  The predominant land uses/land covers in this region are row crop agriculture (36%), grassland (27%), and deciduous forest (21%).  Much of the region is a rolling plain of loess-mantled ridges over sandstone and carbonate bedrock and pre-Illinoian ground moraine, contributing to a diversity of topographic relief and vegetation (McNab and Avers 1994).  BCR23, as its name implies, transitions from beech-maple forest in the north to agriculture (historically tallgrass prairie) in the south.  There is also a gradient in climate from northwest to southeast, with climatic differences most pronounced east of Lake Michigan (GRAPHIC HERE studyarea_precip.bmp).

Response Data


There are 124 BBS routes in BCR23, with an additional 80 routes within 50 km of the study area (GRAPHIC HERE studyarea.bmp).  We included these additional routes to minimize the influence of edge effects when predicting abundance at the edges of the region.  Each BBS route contains 50 evenly-spaced survey locations (stops) at which an observer counts all birds seen or heard in a 3-min period.  The sum of counts from the 50 stops in a year’s route survey is used as an index to abundance along the route for that year.  We used counts collected from 1981−2001 to coincide temporally with our land cover data, derived from satellite imagery taken in the late 1980s and early 1990s (Vogelmann et al. 2001).  Unlike Link and Sauer (2002), we do not limit our modeling efforts to include only those routes where Cerulean Warbler were sighted at least once between 1981 and 2001.  

Hierarchical Model

Model Formulation.─To identify unbiased relationships between environmental covariates and avian abundance, we implemented a flat prior Bayesian model (Gilks et al. 1996, Gelman et al. 1997, Spiegelhalter et al. 2000) accounting for space, environmental covariates, and count structure.  Poisson models are a natural starting point for modeling count data because counts are discrete, positive valued, and typically exhibit strong mean-variance relationships (Royle et al. 2002).  The spatial Poisson model was specified as:
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where Z(s) and ŋ(s) are random effects, and 
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, with xj(s) as spatially-indexed covariates such as landscape descriptors, and βj determining change in abundance (on the log scale) per unit change in covariate j (Royle et al. 2002).  The index s is in geographic coordinates.  The random effects Z(s) and ŋ(s) control for spatial relatedness of counts and nuisance effects (i.e., variation between observer, novice, and route), respectively.  Environmental covariates are treated as fixed effects, under the assumption that they are measured without error.


Spatial effects (Z(s)) were included by applying a Gaussian conditional auto-regressive (CAR) prior distribution on the spatial neighborhood of routes (Besag et al. 1991, Spiegelhalter et al. 2000).  Determination of the proper spatial neighborhood is critical for proper parameter estimation.  We delineated a spatial neighborhood on an irregular lattice by tessellating the sample routes, and from this neighborhood structure derived an adjacency matrix of 1st-order neighbors (GRAPHIC HERE studyarea_spatialstructure.bmp).

To accommodate observer biases in ŋ(s), we included a random effect, ω, for observers and a random effect, ηΙ, to indicate the first year of service for an observer, where Ι is an indicator variable (0, 1) (Link and Sauer 2002).  We also included a year effect (γ) while extra-Poisson dispersion is accounted for by overdispersion effects (εk).  The final model then is:
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where k is year-specific counts indexed over space (s).  In effect, the model is an overdispersed Poisson regression with fixed and random effects, with the counts modeled as a loglinear function of explanatory variables describing habitat, spatial relatedness, and nuisance effects.  


Because there is no closed-form expression for the parameter estimates, the model must be fitted by iterative simulation (Royle et al. 2002).  We conducted model fitting in WinBUGS (GRAPHIC HERE WinBUGS_screengrab.doc), a statistical package conducting Bayesian inference with Monte Carlo Markov Chain (MCMC) methods (Gibbs Sampling) (Speigelhalter et al. 1999, Link et al. 2002) following specific methodology described by Royle et al. (2002).  

A necessary initial consideration in a Bayesian analysis is whether prior distributions are informed (Link et al. 2002).  Given little empirical support for one distribution over another, we modeled with non-informative priors (Link and Sauer 2002).  Year (γ), observer (ω), and overdispersion (ε) effects were specified as having mean zero normal distributions (as in Link and Sauer 2002) (GRAPHIC HERE distributions.bmp).  The hyperparameters (, Z, and η were given diffuse (essentially flat) normal distributions with mean of one and variance equal to 1,000 (Thomas et al. 2002). 

Model Selection.─Variables relevant to Cerulean Warblers were chosen a priori (Table 1 A priori variable.doc) based on a review of literature (primarily the Birds of North America account, Hamel 2000a, and references therein) and expert opinion (Tom Will, US Fish and Wildlife Service).  Variables included in our analysis were those which could be measured remotely across the region, including land use composition and configuration, climate, terrain, and human influence link here to original ‘Additional information’ webpage (Appendix A environmental_variables.doc).  Each variable was assessed at three logarithmically-related scales, 800-, 8,000-, and 80,000-ha (these extents correspond to the mean product of buffers of 0.1-, 1-, and 10-km, respectively, placed about each NABBS route) (GRAPHIC HERE NABBSscale.bmp).   

Variables were standardized about their mean to improve MCMC performance (Gilks and Roberts 1996) and to assess comparative value of each model covariate.  Due to the cumbersome nature of iterative simulation and because of our multi-scale approach, we conducted variable selection analogous to a backward selection from a global model.  Models created at each scale were then combined to create a multi-scale model.  Interaction and quadratic terms were assessed only if published habitat associations warranted their inclusion.


A properly parameterized model (i.e., a model with the correct covariates) would reduce the need for the CAR spatial structure (B. D. Ripley in reply to Besag et al. 1991).  To assess the relative contributions of the spatial (u) and heterogeneity (v) random effects (structured and unstructured components, respectively), we calculated the posterior distribution of the quantity ( = varu / (varv + varu), where varu and varv are the empirical marginal variances of u and v, respectively (Best et al. 1999).  As ( approaches 0, spatial variation becomes negligible.  

We compared the Deviance Information Criterion (DIC) between models with and models without spatial structure; DIC is an information criterion analogous to Akaike’s Information Criterion (AIC), with the most parsimonious model possessing the smallest DIC (Speigelhalter et al. 2002).  We calculated model weights akin to the method suggested by Burnham and Anderson (1998, 2002) for AIC weights:
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where (i is the difference between the DIC from model i and the DIC possessed by the most parsimonious model (the model possessing the minimum DIC).


Model Criticism.─We assessed model goodness-of-fit akin to Link and Sauer (2002), comparing model fit to fit of replicate data (Gelman et al. 1995).  Fit was calculated as:
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The frequency to which the fit of the original data exceeded the fit of replicate data is the Bayesian p-value; this measures the proportion of simulations in which the replicate quantity exceeds the realized quantity.  Good fit occurs with a P = 0.5, whereas major failures of the model occur at P < 0.01 or > 0.99 (Gelman et al. 1995:173).  

Post-hoc Exploration.─Ideally, spatial structuring (Zk(s)) of the model would be unnecessary given the inclusion of a proper set of environmental covariates creating the spatial relatedness between counts.  Thus, in the situation in which our a priori set of environmental variables failed to obviate the spatial structuring of the model, we conducted a post hoc examination for additional potential explanatory variables.  We employed a regression tree approach (De’ath and Fabricius 2000) whereby we evaluated the relative influence on Cerulean Warbler counts of 28 climate, 25 landscape composition, 27 landscape configuration, two human disturbance, and 15 terrain variables measured for several land cover types at each of the three spatial scales (Appendix A LINK TO LIST OF VARIABLES environmental_variables.doc).  Many of these variables were related, measuring various aspects of landscape composition and configuration.  For example, deciduous forest edge density, deciduous core area, and deciduous patch interspersion and juxtaposition measure some aspect of forest edge, but none by itself provides a complete context to the phenomenon.  The advantage of using a regression tree approach was to allow the data to identify the most appropriate variables.  

Calculations of regression trees occurred with CART (Breiman et al. 1984, Steinberg and Colla 1997).  The regression tree was split based on least-squares minimization for log10-transformed Cerulean Warbler counts.  Tree size was defined by the one-standard-error rule, whereby the smallest tree was chosen that minimized the estimated error rate to within one standard error of the minimum error rate (De’ath and Fabricius 2000).  Ten-fold cross validation was used to test validity of the resulting tree (De’ath and Fabricius 2000).  The final variables selected for inclusion in post-hoc models were based on their importance value across the tree; we chose importance value as a means of identifying the relevant suite of variables for possible inclusion rather than simply those occurring as primary node splitters because the importance score measures the ability of a variable to mimic the chosen tree and to act as a surrogate to primary splitter variables.  Inclusion of these surrogates may help to reduce the potential for spurious associations.  The final suite of post-hoc variables were introduced to the a priori model for consideration; these variables were retained if they reduced the variance explained by the model’s spatial structure or replaced an a priori surrogate. 

Model Evaluation.─We evaluated the model with three independent sources of data.  We withheld from model construction data from 64 of the 204 NABBS routes occurring within the larger study area and used these data in one evaluation.  We included in this assessment NABBS counts collected over all routes in 2002.  For each route used in validation, we calculated a mean predicted abundance.  Abundance from the validation route was assessed against this mean predicted abundance.  Additional sources of independent model assessment included the use of point counts of Cerulean Warblers collected at 21 locations within the study area (Appendix B  LINK TO LIST OF Fedlands fedlands.doc) and data provided by the Cerulean Warbler Atlas project (Rosenberg et al. 2000).  The Atlas data only included known Cerulean Warbler locations and, thus, did not provide insight into how well the model predicted areas of absence.
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