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INTRODUCTION 

Variance components may play multiple roles (cf., Cox and Solomon 2003).  First, magnitudes 

and relative magnitudes of the variances of random factors may have important scientific and 

management value in their own right.  For example, variation in levels of invasive vegetation 

among and within lakes may suggest causal agents that operate at both spatial scales—a finding 

that may be important for scientific and management reasons.   

Second, variance components may also be of interest when they affect precision of means 

and covariate coefficients.  For example, variation in the effect of water depth on the probability 

of aquatic plant presence in a study of multiple lakes may vary by lake.  This variation will affect 

the precision of the average depth-presence association. 

Third, variance component estimates may be used when designing studies, including 

monitoring programs.  For example, to estimate the numbers of years and of samples per year 

required to meet long-term monitoring goals, investigators need estimates of within- and among-

year variances. Other chapters in this volume (Chapters 7 and 10) as well as extensive external 

literature outline a framework for applying estimates of variance components to the design of 

monitoring efforts. In particular, a series of papers with an ecological monitoring theme 

examined the relative importance of multiple sources of variation, including of variation in 
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means among sites, years and site-years, for the purposes of temporal trend detection and 

estimation (Larsen et al. 2004, and references therein).  

Due to the scientific and management value of variance components and their role in 

study design, the statistical properties of variance component estimators should be investigated.  

Specifically, investigators may explore bias, precision and other properties of estimators using 

variance component estimates derived from, for example, simulated datasets.  Such evaluations 

may be undertaken to compare performance of alternative estimators in general, or to assess the 

performance of one or more estimators under the constraints of a specific study or monitoring 

design.  Note that understanding the properties of variance component estimators represents an 

important aspect of wisely using variance component estimates for designing monitoring 

programs. 

What, specifically, are variance components?  Consider each of multiple measurements, 

yij, i = 1, …, n, from each of multiple units (‘sites’), j = 1, …, m, and presume that yij derives 

from the model yij = 00β  + u0j + eij, where 00β denotes the expected value (grand mean) of yij, 

E[yij], u0j a site-specific effect on yij and eij residual variation.  Presume further that the u0j’s are 

independent and identically distributed (iid) with mean zero and variance 2
sites , that the eij’s are 

iid (given the u0j’s) with mean zero and variance 2
es , and that the eij’s are uncorrelated with the 

u0j’s.  Then it may be shown that the variance of yij, 2
ys , is 2

sites  + 2
es .  Hence, we see that 2

sites  

and 2
es  are components of 2

ys , the variance of y (Searle et al. 1992).  

This chapter aims to help readers estimate variances associated with monitoring designs, 

to think critically about the value of variance estimates from small samples, and to emphasize 

that estimator performance may affect study design conclusions.  The previous chapter in this 
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volume (Chapter 8) provides a general introduction to defining and estimating components of 

variation relevant to monitoring and other ecological studies. In this chapter, I focus more 

specifically on estimation of variance components, using not only analysis of variance (ANOVA) 

but also maximum likelihood (ML)—whether full (FML) or restricted (REML), partial or 

quasilikelihood—and Bayesian approaches.  More attention is paid to ML estimation because 

ANOVA is traditionally restricted to use with linear models, use of ANOVA is addressed in 

Chapter 8, and variance component estimation has been addressed in the literature more 

extensively using likelihood than Bayesian methods. 

This chapter addresses variance components estimation from continuous, categorical, and 

count data.  Variance-component estimation for categorical and count data involves 

considerations and approaches that may seem highly technical to some of this volume's readers. 

However, advanced readers may find this coverage useful, given that categorical and count data 

are commonly encountered in ecological studies. Throughout the chapter, general comments 

from the literature are augmented by results from simulations.  Foci include estimation from 

small samples and from data from cross-classified sampling designs.  

 

A cross-classified model 

The ecological and temporal foci of this volume suggest the consideration of two-way cross-

classified random effects sampling designs.  Such designs permit multiple observations from, for 

example, multiple sites in each of multiple years.  A candidate model equation may be 

represented by 

 

00 0 0 0βijk j k jk ijky u u u ε= + + + +       (1) 
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where yijk denotes the ith observation, i = 1, …, njk, within the jkth site-year, j = 1, …, msite, k = 1, 

…, myear; 00β  denotes the expected value (grand mean) of yijk; 0ju , 0ku  and 0 jku  denote random 

site, year and site×year effects (respectively), and ijkε  denotes residual error.  The random terms 

are presumed distributed with means zero, and variances 2
 sites , 2

 years , 2
 site-years  and 2

 εs , 

respectively.  Note that the model is a random effects model (covariates are absent) and that, 

from a multilevel (hierarchical) modeling perspective, the three group-level terms are at the same 

level while the observations occur at a lower level, the observation level. For further information 

about modeling outcomes with cross-classified random group effects, see Meyers and Beretvas 

(2006) and the multilevel modeling texts by Raudenbush and Bryk (2002), Goldstein (2003) and 

Hox (2010). 

 

Simulation models 

The above cross-classified model and the specified variance components provide a general 

framework relevant to many long-term monitoring efforts and other ecological studies (see also 

Chapter 7). However, the majority of studies in the literature assess estimator performance for 

designs less relevant to the focus of this volume.  Further, many of those studies presume sample 

sizes that exceed those typically associated with ecological studies.  Specifically, pilot studies 

designed to quantify variance components for use in designing monitoring studies will often be 

associated with cost and time constraints that yield both few observations per site-year group (n) 

and few years (myear), and often relatively few sites (msite).  For these reasons, I augmented 

findings from the literature with those from data simulated under (1) with relatively small sample 

size assumptions. 
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For most simulation scenarios conducted for this chapter, site, year, site×year and residual 

effects were distributed as normal random variates, with means 0 and variances as defined under 

(1).  For a few scenarios, however, random effects were generated from non-normal distributions 

to explore the effects of violating normal distributional assumptions common to most estimation 

methods.  In other scenarios, I altered the relative magnitudes of variance components, sample 

sizes (msite, myear, or n) and other factors relevant to specific data types (e.g., a naïve Poisson 

distributional assumption for conditional, negative binomial-distributed count data).  With the 

exception of those scenarios specified as unbalanced, numbers of observations per site-year were 

constant (i.e., njk = n for all jk) and small (n = 5 or 10). 

In all simulations, site and year effects were independent, and site-year (u0jk) effects and 

residual errors ( εijk ) conditionally so.  In practice, real data may be more complex—site effects 

may be spatially correlated, annual effects may be temporally correlated and conditional site-year 

effects may be spatio-temporally correlated.  Given small sample sizes, however, such concerns 

will not easily be addressed.  The appropriateness of these simplifying assumptions does not 

affect the conclusion that small sample sizes may jeopardize accurate and precise estimation of 

variance components.  Owing to the temporal focus of this volume and because variation in year 

effects may most directly affect temporal inferences (Larsen et al. 2004), I provide results 

primarily for 2
years  estimators; results for other estimators may be obtained using code supplied at 

the volume’s web site. 

 

VARIANCE COMPONENTS ESTIMATION AND LINEAR MODELS 

Variance component estimation using linear models with random effects is a relatively developed 

topic, dating to at least 1861 (Airy 1861, Scheffé 1956) and represents the focus of many texts 
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(e.g., Searle et al. 1992, Rao 1997, Cox and Solomon 2003).  Variance components have 

traditionally been estimated using ANOVA and, beginning in the 1960s and 1970s, increasingly 

with ML and REML (Searle et al. 1992).  More recently, computational advances have 

stimulated interest in Bayesian methods of estimating variance components (Draper 2008).  See 

Appendix 1 for description of ANOVA, ML and Bayesian methods of estimating variance 

components using linear models. 

The maturity of variance components estimation using linear models, combined with the 

common problem for ecological studies of small sample sizes, motivated this chapter’s focus on 

issues associated with sample size.  For variance component models, the most relevant sample 

size is typically defined relative to the variable of interest—years if among-year variance is of 

interest, sites if among-site variance is of interest, and so on.  This perspective often leads to 

greater attention being paid to the estimation of group-level than to observation-level 

components:  Sample sizes at group levels are typically much smaller than sample sizes at the 

observation level, although exceptions may occur when 2
es  is estimated by group or by other 

data subset. 

 

Bias of variance component estimators 

Bias is commonly considered when evaluating the performance of estimators.  However, the 

importance of bias as a criterion for evaluating estimators is often treated as less important for 

variance component than for fixed effect estimators.  For ANOVA, this reflects that the favorable 

property of the unbiasedness of ANOVA variance estimators comes at the expense of accepting 

negative variance estimates while the common solution of setting those negative estimates to 

zero yields positive bias.  However, FML and REML estimators of group-level variance 
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components are often biased (Searle et al. 1992).  Another concern is that bias reflects the idea of 

multiple repetitions of the same study (Searle et al. 1992, section 2.3; see also Chapter 3).  Of 

course, variance components are often estimated from observational data—where replication  

may be empirically unattainable.  

Despite the above issues, bias of variance component estimators remains an important, 

albeit qualified, concern.  For example, Browne and Draper (2000, 2006) documented negligible 

bias with REML for group-level variance components but relatively large negative biases with 

FML at 6 and 12 groups (~-21% and -11%, respectively); biases associated with Bayesian 

estimation using Gibbs sampling depended on prior and posterior summary (mean, median, 

mode) but were generally greater in magnitude than those documented for ML.  Biases decreased 

in magnitude for both ML and Bayesian methods when numbers of groups increased to 24 and 

48.  Raudenbush (2008) argued that, in a likelihood setting, small numbers of observations per 

group may yield group-level variance component estimates that are biased low; by contrast, the 

residual error variance, 2
 εs , which is estimated from all observations from all groups, will 

generally be accurately estimated (and, for this reason, estimation of 2
 εs  will represent a minor 

focus of this chapter). 

The above findings from the literature are congruent with those from the simulations 

conducted for this chapter using small sample sizes and cross-classified random effects designs 

(Table 1).  Relative biases associated with ANOVA and REML estimators of 2
years  were ignorable 

when myear = 10 and 20, and modest when myear = 3 and 5 (scenarios 1 – 4; ANOVA, REML).  

The unexpected finding of lower bias for the ANOVA and REML estimators at years = 3 is an 

artifact of the treatment of negative values:  Negative ANOVA estimates were, as is commonly 

done, set to zero while REML (and FML) estimation ensures nonnegative estimates by setting 
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negative solutions to zero.  (For all estimation methods, the proportion of nonpositive variance 

estimates under the years = 3 scenario was ≥10%.)    In contrast to the ANOVA and REML cases, 

biases for FML were severe at small sample sizes (scenarios 1 – 2).  As noted in Appendix 1, the 

bias of the FML estimator is approximately -k / sample size (provided the proportion of zero 

estimates is small), where k denotes the number of linearly independent fixed covariate terms.  

For this and other reasons, REML is typically preferred over FML for estimating variance 

components.  See McCulloch and Searle (2001) for a fuller treatment of this topic. 

The effects of manipulating attributes unrelated to year on bias of 2
years were typically 

minor.  Relative to that of the myear = 5 reference (scenario 2), bias improved modestly when n 

was doubled but was not improved by doubling the number of sites (scenarios 5, 6).  Bias 

improved trivially when 2
εs  was substantially decreased (scenario 9); such decreases may occur 

with sampling protocol refinement or adjustment for covariates that vary at the observation scale.  

As also described by Cools et al. (2009), the effects on bias were not severe when datasets were 

unbalanced (scenarios 7-8).   

 

Precision 

The topics of precision and of precision comparisons across estimators of group-level variances, 

particularly when numbers of groups are few, have received limited attention.  Browne and 

Draper (2006) documented improvements in the precision of group-level variance component 

estimators as numbers of groups increased, when datasets were balanced, and as the among-

group variance : within-group variance ratio (i.e., the intra-class correlation coefficient) 

increased.  While Monte Carlo standard deviations for scenarios with few groups (m = 6, 12) 

were typically smaller for FML than for REML and for both relative to Bayesian estimators, 
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among-method differences narrowed or disappeared when number of groups reached 24.  

Coverage by Bayesian credible intervals approximated nominal coverage with as few as 12 

groups.  See Browne and Draper (2000) for a related study, and Gelman and Hill (2007, section 

19.6) for comments on selection of priors for estimating group-level variances in studies with 

few groups. 

The precisions of 2
years estimators under the small sample-cross-classified design 

simulation study of this chapter were poor, with Monte Carlo standard deviations approaching or 

exceeding in value those of the corresponding variance component point estimates (Table 1).  

Substantial improvements in precision occurred only with increased numbers of years, chiefly 

when years reached 10 and 20 (scenarios 3, 4).  As may be expected, precision was largely 

unaffected by increases in numbers of sites sampled, numbers of observations sampled per site-

year, and changes in 2
sites  and 2

εs  (scenarios 5, 6, 9, 10).  Precision deteriorated modestly when 

datasets were unbalanced, with less deterioration when cells contained one rather than no 

observations (scenario 7, 8; cf., Cools et al. 2009).  

Precision concerns when numbers of groups are small may be addressed by treating 

inferences as provisional pending more years of monitoring (presuming variance component 

magnitudes remain approximately constant) and by decreasing variances by adjusting for 

covariates.  When planning for new studies, investigators should consider that available or pilot 

variance component estimates derived from few groups may not only be biased but also be 

estimated imprecisely.  The importance of these concerns may be addressed using simulations 

(Appendix 4). 
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Mean squared error 

Bias and precision may be quantified in combination using a number of methods, including that 

of root mean squared error (RMSE = 2bias +variance ).  For the simulation study and as may be 

inferred from the preceding discussion, relative RMSEs for 2
years  decreased over the 3, 5, 10 and 

20 year series (0.35, 0.24, 0.16 and 0.10 units, respectively), with largest decreases occurring 

when numbers of years were relatively small (ANOVA/REML, Table 1). 

 

Distributional assumptions 

Group-level random effects such as those associated with equation (1) are typically assumed to 

be normally distributed.  Maas and Hox (2004) addressed the reasonableness of this assumption 

by intentionally treating skewed (chi-squared with one degree of freedom), heavy-tailed 

(uniform) and light-tailed (Laplace) group effects as normally distributed.  The effects of these 

distributional violations on variance component point estimates from REML were modest, with 

largest reported relative bias (12%) associated with their study’s smallest sample size scenario 

(30 groups with 5 observations per group). 

Modest effects of distribution violations were also seen when group effects in this 

chapter’s simulation study were random uniform but were naively modeled under a normal 

distributional assumption (scenarios 12, 13, Table 1).  At years = 5 and relative to the balanced 

case, mean variance point estimates were larger while Monte Carlo standard deviations 

decreased (scenarios 2, 12).  Increasing the number of years to 20 narrowed differences among 

point estimates but widened relative differences among precision estimates (scenarios 3, 13).   

The possibility that distributional assumptions have not been essentially met should lead 

investigators to treat variance component estimates from small samples with additional caution.  
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Snijders and Berkhof (2008) address diagnostic checks for model residuals at group and 

observation scales.  Unfortunately, the reasonable satisfaction of distribution assumptions may be 

unclear when numbers of groups are small; in these cases, the practical importance of 

distributional-assumption failure may be addressed using simulations. 

 

Variance partition coefficients 

Group-level variance components are often reported as proportions of total variation.  Such 

proportions are termed variance partition coefficients (VPCs), and may be used for both study 

planning and scientific purposes (Kincaid et al. 2004; Browne et al. 2005; Hox 2010, chapter 

12).  For linear models without covariates with random coefficients, VPCs are equivalent to the 

intra-cluster or intra-class correlation coefficient (ICC) familiar from survey statistics (see also 

Chapter 8).  For these models (and given a single group-level variance term), ICC = VPC = 0 

denotes independent observations while ICC = 1 denotes an absence of variation within groups; 

most studies with grouped data yield ICC estimates between 0 and 1. 

 The two-way cross-classified random effects model associated with (1) yields VPCs that 

correspond to correlation between two outcomes from the same site and year, same site but 

different year, and same year but different site, respectively (cf., Raudenbush and Bryk 2002): 

 

2 2 2
site year site-year

site-year 2 2 2 2
site year site-year

VPC
ε

s s s
s s s s

+ +
=

+ + +
 

 

2
site

site 2 2 2 2
site year site-year

VPC
ε

s
s s s s

=
+ + +

     (2) 
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year 2 2 2 2
site year site-year

VPC
ε

s
s s s s

=
+ + +

  

 

The effects of sample size and balance on VPC estimation are illustrated usingyearVPC , 

as derived from simulation study estimates.  For scenarios 1 – 8, biases in mean yearVPC  from 

ANOVA and REML estimation were <15% (Table 2).  However, biases in the medians of the 

typically right-skewed yearVPC  exceeded |20%| when years ≤5 and, for ML, reached -32% and -

47% when years = 5 and 3, respectively.  The properties of VPC estimators for linear models 

with multiple random effects is poorly addressed in the literature; the results from the current 

study suggest caution when estimating VPCs using ML estimates from few groups. 

 

VARIANCE COMPONENT ESTIMATION AND CATEGORICAL DATA 

 

Binomial data 

The binomial distribution derives from the idea of a Bernoulli trial, which is defined as an 

experiment with only two exclusive outcomes (e.g., female or male, hatched or failed to hatch).  

Let p denote the probability of success (e.g., female, hatched).  A binomial experiment is defined 

as a sequence of identical and independent Bernoulli trials, each with success probability p; the 

binomial outcome, a count, represents the number of successes.  Data that might be treated as 

binomial include counts of the number of females in a litter or of the number of hatched eggs 

within nests.    

Models of binomial data typically address fundamental characteristics of those data, 

including that expected responses (probabilities) are nonnegative and don’t exceed one and that 
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sampling variances are functions of the expected responses.  These characteristics are typically 

viewed as precluding the use of standard linear models with binomial data.  Instead, binomial 

data are typically modeled via the inverses of cumulative distribution functions, including those 

of the standard logistic, standard normal and standard extreme value distributions.  Use of these 

functions yield logistic (logit), probit and complementary log-log models, respectively 

(McCullagh and Nelder 1989).   

Binomial data are commonly modeled using generalized linear models (GLMs).  GLMs 

generalize linear regression by incorporating a linear predictor while also permitting linear and 

nonlinear associations between response means and predictors.  The combination of a linear 

predictor and model nonlinearity is permitted by use of a function that links the expected value 

of the response with the linear predictor.  Link functions commonly used for binomial data 

include the logit, probit and cumulative log-log functions mentioned above.  The addition of 

random effects to a GLM yields a generalized linear mixed model (GLMM).  Further 

descriptions of GLMs and GLMMs are provided by Lindsey (1997) and McCullough and Searle 

(2001). 

A two-way random effects cross-classified GLMM equation for the expected value of a 

binomial probability, pjk, with logit or log odds link is: 

 

00 0 0 0logit( ) log β
1

jk
jk j k jk

jk

p
p u u u

p
 

= = + + + − 
   (3) 

 

The terms in the linear component of (3) correspond to those in (1): 00β denotes a grand intercept, 

and 0ju , 0ku  and 0 jku  denote, respectively, random site, year and site×year effects.  Analogous to 
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the case with (1), the random terms are presumed distributed (albeit now on the logit scale) with 

means zero and variances 2
 sites , 2

 years , and 2
 site-years  , respectively.  The omission of index “i” [cf., 

(1)] arises from treating grouped Bernoulli outcomes as binomial counts, with binomial index n; 

the error term, denoted εijk in (1), is subsumed in the nominal distributional assumption (e.g., 

logistic).  

An important change from the linear models case is that variances for binomial data may 

be estimated on both link and measurement scales, whereas for linear models these scales are 

equivalent.  As with linear models, variance estimates on the link scale may be important for 

evaluating properties of variance component estimators and for study planning purposes.  On the 

other hand, scientific interest will often focus on the scale at which the response occurs and is 

measured.  For standard models of binomial data, we may then speak about variances on both the 

link (e.g., logit) and measurement (or probability) scales; both are addressed in the following 

sections. Also, I focus principally on logit normal models.  The use of link functions other than 

the logit for GLMMs of binomial data are comparatively rare.  From a variance components 

estimation perspective, Callens and Croux (2005) evaluated the complementary log-log function 

while Browne et al. (2007) provided variance component models using mixed effects probit 

models.  Although I here focus on binomial data from hierarchical designs, the analysis of 

multinomial data—whether ordered or nominal—from hierarchical designs may be treated 

similarly to the case with binomial data; this topic is addressed in detail by Fielding (2003), 

Hedeker (2008) and Hox (2010). 

 

Variance component estimation on the link scale 

GLMMs of binomial data may be fitted using multiple methods, including linear approximations.  
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Linearization methods employ Taylor series expansions and a linear model of the resulting data 

approximations.  These methods are broadly divided into those that use Taylor series expansions 

about the expected marginal value of random effects (i.e., zero) and those that expand about 

subject-specific predictions; these methods are often defined as marginal quasi-likelihood (MQL) 

and penalized or predictive quasi-likelihood (PQL), respectively.  Linearizations may be first- or 

second-order (MQL1 and MQL2, and PQL1 and PQL2, respectively); linearized “data” may also 

be evaluated using residual maximum likelihood (RMQL, RPQL).   

While linearization methods are commonly used, they may yield negatively biased 

variance component estimates when used with binomial outcomes with small numbers of 

observations per group, n, or when among-cluster variances are large (>0.5 on the logit scale; 

Goldstein and Rasbash 1996, Pinheiro and Chao 2006).  Other studies confirm these concerns, 

and also demonstrate superior variance component estimation by PQL1 relative to that of MQL1 

and of PQL2 and MQL2 relative to PQL1 and MQL1, respectively (Rodriguez and Goldman 

1995, 2001; Goldstein and Rasbash 1996; Guo and Zhao 2000; Callens and Croux 2005; Brown 

and Draper 2006; Diaz 2007). 

GLMMs may also be fitted by approximating the marginal likelihood using numerical 

approximations.  These methods, which include Laplace estimation and Gaussian quadrature, 

have yielded variance component biases that are smaller in magnitude than those seen with MQL 

and PQL (see below; Pinheiro and Chao 2006, Diaz 2007, Moineddin et al. 2007).  Further, these 

methods yield likelihood estimates and so permit the calculation of likelihood-based information 

criteria and likelihood ratio tests.  Downsides are that these methods are more computationally 

intensive than their MQL and PQL counterparts, and may not be suitable for designs with 

multiple random components.  In particular, Gaussian quadrature is precluded for models with 
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crossed random factors (McCulloch and Searle 2001), including (3).  Another consideration is 

that, due to improved relative precision of the PQL estimator, PQL may outperform Laplace 

estimation of variance components under a mean squared error criterion (Callens and Croux 

2005, Diaz 2007).  

The relative performance of Bayesian estimators of variance components from 

hierarchical models of binomial data has seen relatively little study.  Findings to date suggest the 

potential comparability or superiority of Bayesian estimators relative to Gaussian quadrature 

estimators, and the superiority of both relative to MQL and PQL estimators (Rodriguez and 

Goldman 2001, Browne and Draper 2006).  Fitting hierarchical models to binomial data using 

Bayesian methods is described by Gelman and Hill (2007).   

We earlier saw with linear models that violation of distributional assumptions for group-

level effects may be associated with biased variance component estimators (Table 1).  Whether 

such biases might be nonignorable under reasonable assumptions for GLMMs has been poorly 

studied.  Moineddin et al. (2007) described distribution-related biases that were resolved with 

increased n when group-level effects were random uniform but not when those effects were 

t(df=3)-distributed.  Unfortunately, the Moineddin et al. study employed models that were 

relatively complex given many of the considered sample sizes.   The topic of distributional 

assumptions in the context of variance component estimation from binomial data requires further 

research. 

 Results from the simulation scenarios conducted with binomial data for this chapter 

confirm the expectation of bias for variance components estimated from few groups (scenarios 1 

– 3; Table 3).  At years = 5, biases were typically substantial in relative magnitude (range: -43% 

to -17%) and also varied substantially among estimation methods.  At years = 20, however, 
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biases were relatively modest (≤|17%|) and varied less among methods (-17% to -7%).  Variation 

in the magnitude of bias among estimation methods was generally in the order MQL1 > PQL1 > 

Laplace > RPQL1 > Markov chain Monte Carlo (MCMC). Second-order linearization methods 

were not evaluated in this simulation study.  

As with the linear model simulations, improvements in 2
years  biases were typically no 

more than modest when attributes other than number of years were varied (scenarios 4-8).  In 

particular, relative biases were similar regardless of whether 2
years was moderate (0.3 units) or 

large (1 unit; scenario 8).   

Precisions of 2
years estimators were generally poor, with most improvement seen when 

numbers of years were increased (compare Monte Carlo standard deviations, Table 3).  For 

example, Monte Carlo standard deviations decreased by ~40% as numbers of years increased 

from 5 to 20 (scenarios 1, 3) but by roughly half that amount when median pij increased from 

0.12 ( 00β = -2; scenario 1) to 0.5 ( 00β = 0; scenario 6).  Note that ranking of precisions by 

estimation method generally followed 2
years  and, hence, typically appeared best for MQL1 and 

PQL1, the estimators with the greatest negative biases.  For PQL1 and from an MSE perspective, 

the improved relative precision typically trumped the importance of increased bias—leading to 

lower MSEs for this method than for other likelihood-based methods.  This latter finding is 

consistent with those reported by Callens and Croux (2005) and Diaz (2007).  

The above evidence suggests that investigators should treat estimates of group-level 

variances from binomial outcomes with few groups as imprecise and, for likelihood-based 

estimators, as negatively biased.  The practical importance of these concerns may be addressed 

using simulation studies prior to the use of those estimates for study planning. 
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Variance Component Estimation on the Probability Scale 

As already mentioned, variance components from GLMMs will typically be more meaningful to 

scientists and managers when reported on measurement scales. For example, consider a 

hypothetical example where hatch success (eggs hatched / eggs laid) of a songbird is measured at 

each of j sites during each of k years. For ecological interpretation, probability-scale estimates 

(e.g., of year-to-year variation in mean probability of success) would typically be more useful 

than logit-scale variance estimates.  Methods for estimating variance components on 

measurement scales include simulations and, for categorical outcomes, a latent variable method 

(Goldstein et al. 2002).  See  Appendix 2 for an overview of these approaches.  As variance 

component estimation methods on measurement scales have seen little study and appear to have 

rarely been employed with ecological data (see Li et al. 2008 for an exception), comments will 

center on results from this chapter’s simulations. 

Concerns associated with estimation of variance components on the probability scale 

include that expected values may be method dependent, and that investigators have not settled on 

a protocol for method selection in all cases.  For cross-classified models, a further concern is that 

methods have not been evaluated in the peer-reviewed literature.  For these reasons, I infer bias 

in 2
years  primarily by comparison with estimates from the model with the largest number of years.   

From the simulation study, we see that 2
years on the probability scale increased with 

number of years (scenarios 1 – 3, Table 4).  As explained above, this finding is concordant with 

an assumption of declining bias in 2
years  with increasing number of years, a finding that also 

parallels that seen with the logit scale estimates (Table 3).  As also seen with the logit scale and 

linear model estimates, biases in 2
years were largely unaffected by changes in n, sites and 2

sites  
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(scenarios 4, 5, 7; Table 4). 

 Variance component estimates on the probability scale for the simulation study were 

generally small (Table 4).  This partly arose from the constraint on variability associated with the 

small median probability [i.e., median pjk = antilogit(-2) = 0.12].  As evidence, note that, while 

holding variance components on the logit scale constant, the 2
years  estimate on the probability 

scale more than doubled when the median probability increased to ~0.50 (scenario 6).  As this 

example demonstrates, comparing variance components on the probability scale will be 

challenging unless those components have means or medians that are comparable (i.e., that are 

roughly equal distances from p = 0.5).  

Estimating variances on inverse link scales becomes more challenging when, as may 

often be the case for ecologists, covariates are present (Goldstein et al. 2002, Li et al. 2008).  For 

example, Browne et al. (2005) used multi-covariate, multi-level logistic models of literacy within 

states and districts within states in India to infer the importance of addressing literacy needs of 

females in rural areas and of whole states with low literacy rates (rather than districts with low 

rates).  This seemingly promising approach has seen essentially no use in the ecological 

literature. 

 

Variance partition coefficients for binomial models 

While VPCs from GLMMs may be estimated on link and measurement scales, VPCs on the link 

scale seem most useful for study planning purposes (cf., Gray and Burlew 2007).  A challenge to 

estimating VPCs on the link scale is that of defining the variation of an observation on that scale.  

Gray and Burlew (2007) addressed this issue for count models using the delta method while, for 

categorical outcomes, the latent variable approach mentioned above may also be used. 
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VPC estimates on the probability scale may vary by estimation approach, with VPCs 

calculated using the simulation approach often yielding smaller estimates than those estimated 

using the latent variable approach (Goldstein et al. 2002, Browne et al. 2005, Li et al. 2008).  

These findings were also seen with this chapter’s simulation study (Table 5).  A major difference 

between the simulation and latent variable approaches is made clear by the behavior of VPC 

estimates as 00β increased from -2 to 0 (scenarios 1, 6).  VPCs estimated using the latent variable 

approach varied little among 00β   values because 2
years  varied little on the logit scale with 00β .  

By contrast, VPCs estimated using the simulation approach varied substantially with 00β because 

2
years  varied substantially on the probability scale with 00β .  The simulation approach will often 

be preferred over the latent variable approach  (Goldstein et al. 2002, Li et al. 2008). 

 

Categorical data and classification errors 

Ecological data that are categorical often incorporate classification errors, a concern that is 

relevant to variance components estimation when classification error probabilities are 

heterogeneous.  For species detection / nondetection data, a misclassification occurs when a 

species that is present is not detected.  Classification errors may also occur for multicategory 

outcomes such as frog calling indices.  Failure to address classification errors may yield 

erroneous inferences for both dichotomous and ordered multinomial outcomes (Royle and Link 

2005, Mackenzie et al. 2006, Holland et al. 2010, Holland and Gray 2011).   

 Addressing classification errors becomes challenging when the probabilities of those 

errors vary among sampling units.  For dichotomous outcomes, failure to address such variation 

will typically yield biased estimators of both the probability of detection and the probability of 
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the true state (Royle and Dorazio 2008).  The analogue of this problem has also been 

demonstrated for multinomial models (Holland and Gray 2010).  

In many settings, variation in a parameter would typically be addressed by allowing the 

parameter to vary according to a mixing distribution (e.g., the logit-normal distribution employed 

above).  For two-category models like those commonly used to estimate occupancy, however, the 

probability of the state variable of interest (e.g., site occupancy) is not identifiable across mixing 

distributions, with the practical importance of this concern increasing as the mean detection 

probability decreases and as unexplained among-site variation in the classification error 

increases (Royle 2006).  It seems reasonable to expect that the same problem will apply to 

multinomial abundance models.  The result is that, while variation in misclassification 

parameters is estimable, such estimation may not always qualitatively improve inferences on the 

variable of interest.  

 

VARIANCE COMPONENT ESTIMATION AND COUNT DATA 

As with their categorical counterparts, count data are typically modeled using GLMs and, given 

random group effects, using GLMMs.  GLMs and GLMMs of counts typically presume counts 

are distributed as Poisson or negative binomial (NB) random variates (conditional on any fixed 

or random effects).  An NB distributional assumption allows for the common case where 

sampling variation exceeds that expected under a Poisson assumption.  GLMMs of counts are 

typically formulated using a log link, a link that conveys the advantage of ensuring predicted 

means are nonnegative. 

The estimation problems described above for modeling clustered categorical data have 

not generally been addressed for count models.  Consequently, few studies have compared 
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variance component estimators for count models as a function of estimation method.  A modest 

exception is found in an adaptive Gaussian quadrature study by Pinheiro and Chao (2006).  As 

part of that study, the authors evaluated RPQL, Laplace and adaptive Gaussian quadrature 

estimators of fixed effects and variance components under a single simulation scenario.  Data 

arose from many groups (300) of two conditional Poisson outcomes each (i.e., n = 2); the median 

group mean was large (~17) while the among-cluster variance on the log scale was low (0.09 

units).  Given this setting, fixed effects and variance components were, as might be expected, 

estimated with ignorable bias (<1.7%) by all three methods.  For comparisons among GLMMs 

and a GLMM elaboration see Lee and Nelder (2001) and references therein.  

 Simulations of count data for this chapter suggest wide differences among estimators in 

performance when outcomes were NB distributed and, to lesser degree, when outcomes were 

Poisson distributed (Table 6).  Simulations were conducted under the log-link analogue of model 

equation (3): 

 

00 0 0 0log( ) βjk j k jku u uµ = + + +     (4) 

 

Convergence rates for PQL1 and RPQL1 models were poor when outcomes were NB-distributed 

(Table 6: upper panel) and often little better when outcomes were Poisson distributed (Table 6: 

lower panel).  Restricting subsequent attention to MQL1 and Laplace estimators, bias and 

precision was typically best under Laplace estimation.  Note that the MQL1 estimators of the NB 

dispersion parameter and of 2
site-years  were typically positively biased and estimated imprecisely.  

For scenario NB3, for example, the MQL1 estimator (with Monte Carlo standard deviations) 

yielded NB dispersion parameter and 2
site-years  estimates of 1.00 (0.24) and 0.37 (0.17)—with true 
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values 0.5 and 0.15, respectively.  By contrast, the corresponding Laplace estimates were 0.50 

(0.03) and 0.15 (0.02), respectively.  Evidence of positive bias in 2
site-years  was also seen with 

MQL1 models of Poisson outcomes.  As also seen with the binomial models, variation in 

attributes other than number of years typically led to only minor effects on the bias and precision 

of 2
years  (Table 6).   

 Naïvely treating NB-distributed outcomes as Poisson-distributed yielded generally minor 

changes in 2
years  estimates (compare scenarios NB1, NB10; Table 6).  Instead, the effects of 

misspecifying the conditional generating distribution was seen in inflated 2
site-years  estimates; these 

estimates were, on average, biased high by 59% and 68% for MQL and Laplace estimation, 

respectively (relative to those derived under the conditional NB assumption).  These findings 

reflect the wisdom of addressing extra-Poisson variation in models of count outcomes. 

While the results described in this section provide modest evidence in favor of Laplace 

estimation, readers interested in VC estimation from count data should also consider MCMC 

and, for fully nested models, adaptive Gaussian quadrature. 

 The contamination of count data with structural zeroes has been a common concern for 

modelers and ecologists (Cameron and Trivedi 1998, Gray 2005).  This topic of zero inflated 

count data has been addressed from a model specification rather than estimation method 

perspective for grouped count data by Min and Agresti (2005), Lee et al. (2006), Moghimbeigi et 

al. (2008) and Gray et al. (2010). 

 

Variance components from count models on the measurement scale 

Interest in variance components (and in VPCs in particular) on the measurement scale for count 
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outcomes has lagged that for binomial outcomes.  An implicit exception is Goldstein et al. 

(2002).  While Goldstein et al. focused on binomial outcomes, those authors noted that three of 

the four methods they proposed—model linearizations using Taylor series approximations, a 

normal distributional approximation, and simulations—might be considered for use with other 

nonlinear models. Stryhn et al. (2008) considered the above three methods from a count 

perspective, and also considered exact formulae (calculated using integration formulae for 

exponential functions).  They found the simulation and integration methods yielded results that 

were not only similar but also superior to those derived by the linearization and normal 

approximation methods.  The Stryhn et al. paper is sparse on methodology and results (but see 

presentation at http://people.upei.ca/hstryhn/iccpoisson.ppt); a more detailed follow-up paper is 

expected (H. Stryhn, personal communication, 25 Aug 2009).   

Estimating VPCs on the measurement scale for cross-classified random effects count 

models has not apparently been addressed in the literature.  One approach that seems promising 

but which has apparently not been evaluated in the published literature would adapt the 

provisional method supplied in Appendix 2 for counts by substituting the exponential for the 

logistic function in step 1 and by modifying var( )i jky in step 5 to reflect the assumed count 

distribution. 

 

SOFTWARE FOR STUDY DESIGN 

Given the focus of this book, many readers may be interested in variance component estimation 

for the purposes of designing new monitoring efforts and other ecological studies. Other chapters 

in this volume address study design at length, but here I briefly mention a few tools useful for 

study design for the types of data considered in this chapter.    



25 
 

The design of such studies may be explored using study-specific simulations or using a 

number of specialized freeware packages.  For example, MLPowSim estimates statistical power 

using either R or the multilevel software package MLwiN, and using ML, REML or MCMC; 

MLPowSim may be used with continuous, binary and count data (Browne et al. 2009).  Another 

package, PINT, calculates approximate standard errors for estimates of fixed effects, as well as 

optimal sample sizes, for linear models with two levels (Snijders and Bosker 1993; PINT is 

available at http://stat.gamma.rug.nl/multilevel.htm). The program Optimal Design calculates 

sample size, statistical power, and optimal allocation of resources for multi-level studies with 

continuous and binary outcomes (Spybrook et al. 2009).  Note that Wang and Gelfand (2002) 

address sample size determination from a Bayesian perspective.  

 Methods for addressing study design for clustered count outcomes are underdeveloped.  

Models of trends among grouped counts with a design focus have presumed linearity (Gibbs et 

al. 1998, Urquhardt et al. 1998, Kincaid et al. 2004) or that counts were lognormally distributed 

(Gerrodette 1987, 1991).  Exceptions include Purcell et al. (2005) and Gray and Burlew (2007).  

Purcell et al. estimated statistical power to detect trends in a hierarchical count setting using 

Monte Carlo methods under an assumption that data were Poisson, conditional on random 

observer and/or route effects.  Gray and Burlew provided algorithms for estimating precision of 

and power to detect trends in a single population using GLMMs with conditional Poisson and 

NB distributional assumptions.   

 

FUTURE RESEARCH AND DEVELOPMENT 

Sampling designs often incorporate variable selection probabilities.  For example, sampling units 

associated with heterogeneous habitats may be oversampled relative to those from homogeneous 
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habitats.  Variation in sampling probabilities may be addressed using survey statistical methods 

through the use of sampling weights.  Unfortunately, the improper use of sampling weights using 

models (as distinct from design-based methods) may lead to biased estimates of among-group 

variation.  Addressing this shortcoming through so-called design-adjusted models represents an 

area of ongoing research.  Statistical modeling packages that accommodate sampling weights 

include Mplus, MLwiNand Stata (Muthén and Muthén 2010, Rasbash et al. 2009, StataCorp 

2009).  Further discussion of this topic is provided by Rabe-Hesketh and Skrondal (2006) and 

Carle (2009).    

 

SUMMARY 

Variance components may be estimated for scientific, management and study planning purposes.  

Scientific purposes include, for example, whether nitrate concentrations in lakes vary more 

among than within lakes, and whether either might be associated with putatively causal agents 

(e.g., agricultural runoff).  Variance component estimates are used for study planning when, for 

example, an investigator wishes to select the number of groups (e.g., lakes) and the number of 

observations within each group for a future study.  A major concern is that variance component 

estimators may be biased and yield imprecise estimates when the number of groups is small.  

This concern appears especially relevant for ecologists who, for logistic or cost reasons, may 

design studies with few sites and/or few years. 

 This chapter reviews the estimation of variance components and variance partition 

coefficients (VPCs) for continuous, categorical and count data that are clustered, and with 

emphases on studies with small sample sizes and crossed random effects.  Variance components 

estimated from few groups using linear models of continuous outcomes may exhibit only modest 
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bias when estimated using ANOVA or REML but may be substantially biased when estimated 

using FML.  For all three estimation methods, however, precision is expected to be poor unless 

the number of groups is modest to large (e.g., more than 10, and possibly as many as 100). 

Variance components estimated from GLMMs of categorical data may be expected to be 

both biased and imprecise when number of groups are few (e.g., <20 to as high as <100, 

depending on estimation method).  The performance of Bayesian estimators of variance 

components from categorical data appears promising but has received relatively little attention in 

the literature. 

GLMM estimators of variance components from count data have received less attention 

than have their categorical counterparts.  Information supplied in this chapter suggests that, for 

cross-classified random effects models of count data, the Laplace estimator should be preferred 

over first-order quasilikelihood (QL) variance component estimators; the QL estimators suffered 

from poor convergence rates (PQL and RPQL) or substantial bias associated with 2
site-years  

(MQL).  Readers interested in VC estimation from count data should also consider Markov chain 

Monte Carlo and, for fully nested models, adaptive Gaussian quadrature. 

The estimation of VPCs has received relatively little attention in the ecological literature.  

This is particularly the case for VPCs from categorical and count data (for which methods appear 

to have first been published in 2002 and 2008, respectively; Goldstein et al. 2002, Stryhn et al. 

2008).  For these discrete outcomes, VPCs may be estimated on both measurement and modeling 

or link scales.  A method for estimating VPCs for binary outcomes on the measurement scale 

from two-way cross-classified random effects designs is proposed in Appendix 2. 
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APPENDIX 1.  METHODS OF VARIANCE COMPONENTS ESTIMATION USING 

LINEAR MODELS 

 

Analysis of variance 

Analysis of variance (ANOVA) may be used to estimate variance components by equating sums 

of squares to expected values.  Chapter 8 in this volume provides an overview and example of 

ANOVA, while Chapter 7 illustrates another application of ANOVA estimation of variance 

components for a cross-classified model very similar to that associated with (1).  Here, I briefly 

review general properties of ANOVA estimators of variance components.  

The ANOVA estimators of variance components possess a number of advantages.  One is 

that the ANOVA estimators make no distributional assumptions (other than that random effects 

have means zero and finite variances).  Another is that they are unbiased. (However, note that 

Searle et al. 1992, section 2.3, question the importance of unbiasedness for variance component 

estimators.)  A third is that, given balanced data sets and normality, ANOVA variance component 

estimators are “best unbiased” in the sense that, among unbiased estimators of variance 

components, they have uniformly smallest variance.  A final and heuristic advantage is that 

variance components may often be defined in closed form—an advantage seen when variance 

component concepts are motivated using ANOVA arguments even when alternatives to ANOVA 

are recommended (Searle et al. 1992, Snijders and Bosker 1999). 

 However, ANOVA estimators of variance components also possess a number of negative 

attributes.  First, their unbiasedness comes at the cost of allowing group-level variance estimates 

that are negative (variances, by definition, are nonnegative).  Unfortunately, the usual solution of 

setting negative variance estimates to zero eliminates the unbiasedness property of these 
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estimators.  Second, the minimum variance properties mentioned above as a positive attribute for 

balanced data does not apply under unbalanced data assumptions.  Third, unbalanced data—the 

common case for observational data—lead to estimators that are not only more complex but also 

which are not unique.  Further details associated with ANOVA estimation of variance 

components for one-way and multi-way classifications are provided by Searle et al. (1992), Cox 

and Solomon (2003) and, with a less technical approach, Muller (2009).  

  

Maximum likelihood 

Maximum likelihood (ML) requires assuming an underlying probability distribution for a given 

set of data.  ML may then be used to estimate values of the parameters associated with that 

distribution.  For ML, the estimates are those that are considered most likely—given the data and 

the selected distribution.   

ML estimators (MLEs) possess a number of favorable properties.  These include 

properties those that are asymptotic—that are approached as sample size goes to infinity.  These 

latter properties include: consistency (under fairly weak assumptions, MLEs converge to the 

value being estimated), normality, and minimum variance (among asymptotically unbiased 

estimators, and given commonly attained conditions).  Another favorable property is that MLEs 

must be within the range of the given parameter (thereby eliminating the negative variance 

estimates that were possible under ANOVA).  Likelihood-based methods also accommodate data 

that are missing at random.  Last, the distributional assumption may be tailored to the process in 

question.  For example, count data may be presumed to follow one or more of a number of 

potential count distributions.   

Disadvantages associated with using ML include some of those associated with the 
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favorable properties listed above.  First, the favorable properties that are associated with large 

samples may not be reasonable for small samples.  For a given study, investigators may infer that 

a sample is “large enough” based on experience, including that associated with Monte Carlo 

simulations (e.g., Table 1).  Another concern relates to the possibility of unreasonable 

distributional assumptions.  Given small sample sizes, for example, it may be difficult to 

determine on statistical grounds which distributional assumption is most reasonable.  A rejoinder 

is that scientific theory and information from previous studies may (and arguably should) be used 

to select distributional assumptions. 

An important concern related to the use of full maximum likelihood (FML—as distinct 

from REML, described below) to estimate variance components is that FML does not adjust for 

degrees of freedom associated with fixed effects.  For data without clustering, for example, the 

FML variance estimator is 2( ) /iy nµ−∑  rather than 2( ) / ( )iy n kµ− −∑ , where k denotes the 

number of linear independent predictors.  Therefore, the bias of the FML estimator is 

approximately -k / sample size (provided the proportion of zero estimates is small).  See 

McCulloch and Searle (2001) for a fuller treatment of this topic.  Further information about 

MLEs is provided by Casella and Berger (1990) and Searle et al. (1992). 

 

Restricted maximum likelihood 

Restricted or residual maximum likelihood (REML) represents ML on a function of the data, 

specifically that function of the data from which fixed effects have been removed.  REML 

confers the twin advantages of yielding estimators that are invariant to fixed effects, and of 

eliminating the variance component bias related to degrees of freedom described for FML 

estimators in the previous paragraph.  For balanced data, REML estimators of variance 
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components equal the expected value of the ANOVA estimates—provided that negative ANOVA 

estimates are set to zero.  REML estimators of variance components are typically preferred over 

their ML counterparts (McCulloch and Searle 2001). 

 

Bayesian estimation 

In Bayesian statistics, each parameter is treated as a random variable, with variation described by 

a probability distribution.  This distribution, which is assigned without reference to the data in 

question, is termed a prior distribution.  The prior distribution is then updated using information 

from sample data, thereby yielding a posterior distribution for the parameter in question.  This 

updating of the prior distribution occurs via Bayes theorem.  The updated, posterior distribution 

is used for making inferences on the parameter in question.  Introductions to Bayesian analysis 

with an ecological flavor are provided by Link et al. (2002) and Link and Barker (2009); more 

detailed treatments are provided by, for example, Gelman and Hill (2007) and Draper (2008). 

Bayesian methods are valid with small samples, will not yield negative variance 

estimates and don’t require normality assumptions when variances are estimated.  On the other 

hand, Bayesian estimators of group-level variances are not unbiased and have received relatively 

little attention in the literature; estimating variances using Bayesian methods may be more 

computationally intensive than is the case under classical methods.  Fitting models of grouped 

data using Bayesian methods is addressed in Goldstein (2003, section 2.13), Browne and Draper 

2006, Gelman and Hill (2007), Draper (2008) and in Hox (2010, section 11.4); the Goldstein and 

Hox references are less technical. 
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APPENDIX 2.  ESTIMATING VARIANCE COMPONENTS AND VARIANCE 

PARTITION COEFFICIENTS FOR TWO-WAY CROSS-CLASSIFIED RANDOM 

EFFECTS DESIGNS ON THE PROBABILITY SCALE USING SIMULATIONS 

 

Overview 

Variance components on the inverse link scale may best be estimated using simulations (Li et al. 

2008).  In this case, estimation begins by treating parameter and variance estimates on the link 

scale as population values.  The user then generates a large number of means (say, m = 5000) 

under the population assumptions, and then transforms those means using an inverse link 

transformation.  The variance of the means on the inverse link scale is then estimated by method 

of moments; variance at the measurement scale (given the model) is estimated under the 

sampling distribution assumption and across all simulated means. 

For example, consider a random effects logistic regression model with a single group-

level random effect, and with estimated grand intercept and variance on the logit scale of -1 and 

0.7 units, respectively.  Presume group effects on the logit scale are, as is typically assumed, 

normally distributed.  Then generate a large number (e.g., 5000) of random normal variates and 

treat these (after adding a grand intercept) as the population of group means.  Trivially, presume 

two random normal variates of 0.5 and -0.5 are generated.  Given the grand intercept of -1, the 

corresponding means on the logit scale are then (-1 + 0.5) = -0.5 and (-1 – 0.5) = -1.5, 

respectively.  These means may be transformed to probabilities using the inverse logit 

transformation 
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where zj and pj denote means on logit and probability scales, respectively.  By this transform the 

two means on the measurement scale yield pj = 0.38 and 0.18, respectively.  The variance of 

these means, by method of moments, is  
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where p  denotes the sample mean.  The variance at the measurement scale is estimated by the 

mean variance of the putative Bernoulli observations 

 

2

1

1 (1 ) [0.38(1 0.38) 0.18(1 0.18)] / 2 0.1916j j
j

p p
n =

− = − + − =∑  

 

The variance at the measurement scale for binomial models is typically presumed that of a 

Bernoulli outcome—because the number of trials per binomial count may vary and because 

covariates may vary across binary observations (Goldstein et al. 2002).  Of course and as already 

emphasized, the choice of m = 2 groups for this example represented a heuristic device; 

calculations should routinely be performed with much larger m.  An elaboration of this method 

for two-way cross-classified random effects models is provided below. 

 Other methods for estimating variance components on the inverse link scale include 

Taylor series linearizations and, for categorical outcomes, a latent variable method (Goldstein et 
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al. 2002).  The latter method is commonly employed but appears appropriate only when the 

outcome of interest might reasonably derive from a continuous distribution (Snijders and Bosker 

1999, ch. 14; Goldstein et al. 2002).  For example, the probability that an organism may succumb 

to a toxicant may be postulated to derive from a standard logistic or standard normal cumulative 

distribution function.  In these cases, the outcome may be treated as arising from a threshold 

model, and with variance that of a standard logistic or Gaussian outcome (i.e., π2/3 or 1, 

respectively).  For the example above, variance components at the group and measurement scales 

using the latent variable method would be the group-level variance (0.7 units) and π2/3, 

respectively.   

As with variance components, VPCs appear more informative from scientific and 

management perspectives when expressed on measurement scales.  For the example above, 

VPCs calculated using the simulation and latent variable approaches are 0.02 / (0.02 + 0.1916) = 

0.09 and 0.07 / (0.07 +  π2/3) = 0.18, respectively.  Note that the latent variable approach yields 

the same VPC estimates for both link and measurement scales. 

  

Simulation Method for the Cross-classified Model 

As described above, the simulation method of estimating variance components and VPCs on the 

measurement or probability scale represents a reconstruction of the data generation process by 

computer simulations paired with a recording of the observed variation.  Here, I propose a 

simulation method for use with the two-way cross-classified random effects model associated 

with (3).  This method was adapted from the corresponding methodology for fully nested models 

(Goldstein et al. 2002, Browne et al. 2005, Li et al. 2008); I thank Bill Browne for reviewing an 

early draft of the proposed method.  Note that the method simplifies when, as may often be the 
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case, variation in random interaction effects, var(pjk), is treated as either inestimable or as 

identically zero.  The method is as follows: 

 

1. From the model [e.g., (3)], simulate a large number M1 (say 5,000) of main effects u0j, j = 1, 

…, M1, using the corresponding sample estimate of variance (e.g., 2
sites ).  For each j, 

simulate M2 (say 5,000) of main effects u0k, k = 1, …, M2, using the corresponding sample 

estimate of variance (e.g., 2
years ).  For each unique combination, jk, simulate M3 (say, 30) 

interaction effects u0jkl, l = 1, …, M3, using the corresponding sample estimate of variance 

(e.g., 2
site-years ).  Calculate the M = M1×M2×M3 pjkl’s as 

 



00 0 0 0

1
1 exp( ( ))jkl

j k jkl

p
u u uβ

=
+ − + + +

 

 

where 00β  denotes the grand intercept estimate.  

2. Calculate the uncorrected (marginal) variation of the pj’s within k by method of moments.  It 

may be convenient to use a single l replicate per jk: 

 

M2

m
1

1var( ) var( | , 1) var( ) var( )
M2j jkl j jk

k
p p k l p p

=

= = ≈ +∑  

 

 

3. Similarly, calculate the uncorrected (marginal) variation of the pk’s within j by method of 

moments.  It may be convenient to use a single l replicate per jk: 
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4. Calculate the variation of the pjk’s by method of moments: 

 

M1 M2

1 1

1var( ) var( )
M1M2jk jkl

j k
p p

= =

= ∑∑  

 

5. Then, 

 

mvar( ) var( ) var( )j j jkp p p≈ −  

 

mvar( ) var( ) var( )k k jkp p p≈ −  

(B1) 

M1 M2

1 1

1var( ) (1 ) | 1
M1M2i jk jkl jkl

j k
y p p l

= =

= − =∑∑  

 

 

6. VPCs may be estimated from (B1) using (2), above. 

 

The method ignores sampling variation in 00β  and in the variance estimates, and presumes 

linearity on the probability scale.  The first concern may be addressed by nesting the method 
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within a larger Monte Carlo simulation.  The second concern remains unaddressed (Li et al. 

2008).  This method may be adapted to accommodate covariates after Goldstein et al. (2002), 

Browne et al. (2005) and Li et al. (2008).   

The above method is somewhat demanding computationally.  An approximation to this 

method which is less demanding but which elaborates the linearity assumption relies on 

differencing rather than on replicating on jk to estimate var(pjk).  Under the model defined by 

eqn. (3) and the Table 3 legend, this alternative “differencing” method yields 2
years estimates on 

the probability scale that are smaller than those estimated using the above-described method by 

17%, 6%, 28% and 15% (for scenarios 1 to 5, 6, 7 and 8, respectively).  Corresponding 

differences for yearVPC estimates were similar: -16%, -5%, -28% and -14%, respectively.  For 

this alternative method, steps 1 – 3 above are followed with the caveat that the interaction effects 

are not replicated (i.e., M3 = 1).  Steps 4 and 5 become: 

 

Alternate step 4.  Calculate the uncorrected (marginal) variation of the pjk’s by method of 

moments 

 

 

mvar( ) var( ) var( ) var( )jk j k jkp p p p≈ + +  

 

Alternate step 5.  Then,  

 

m mvar( ) var( ) var( )j jk kp p p≈ −  
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m mvar( ) var( ) var( )k jk jp p p≈ −  

(B1 (alt)) 

m m mvar( ) var( ) var( ) var( )jk j k jkp p p p≈ + −  

 

M1 M2

1 1

1var( ) (1 )
M1M2i jk jk jk

j k
y p p

= =

= −∑∑
 

 

The properties of these two methods have not been rigorously investigated (cf., Li et al. 2008).  
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APPENDIX 3.  QUALITATIVE SUMMARY FOR PROGRAM MANAGERS AND 

ADMINISTRATORS 

Managers often rely on estimates from grouped or clustered data.  Examples include estimates of 

mean animal abundance from multiple observations from each of multiple lakes, streams or 

years.  Such data should typically be presumed correlated within clusters, with the correlation 

arising because data from one cluster will typically be more like other data from that same 

cluster (and less like data from other clusters).  Failure to address correlation in clustered data 

may yield invalid conclusions. 

Correlation within clusters may be viewed as the flip side of variation among clusters.  

For example, the average or mean abundance of a species may vary from year to year, a finding 

that implies that data from a single year are relatively similar.  As discussed in the previous 

paragraph, this similarity ensures abundance observations are correlated within years.  

Consequently, variation of means among years implies correlation within years. 

This information—correlation and variation among year or cluster means—will often 

lead, from a planning perspective, to treating the number of clusters as more important than the 

number of data points within clusters.  Since data from clusters are typically correlated, the 

information associated with those data is partially shared with other observations from the same 

cluster.  This sharing of information ensures that data from the same cluster contain less 

information than is contained in an otherwise equivalent set of uncorrelated observations.  

Therefore, the contribution of observations within clusters to effective sample size is smaller than 

their contribution to the stated or nominal sample size.  For example, 100 observations derived as 

20 clusters of 5 observations might contain information equivalent to only 70 independent 

observations. 
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For designing future studies, investigators need estimates of variation among and within 

clusters.  Given study goals, these estimates would then be used to select combinations of 

numbers of clusters and of observations per cluster.  Determining the ratio between numbers of 

clusters and observations per cluster will typically also take into account the costs of sampling 

within clusters and of traveling between clusters. In the context of long-term monitoring, where 

years may often be viewed as clusters, there may be logistical/budgetary benefits associated with 

sampling less frequently but more intensively (e.g., every kth year).  

Estimates of variation among clusters may also be used for scientific purposes.  For 

example, variation in levels of invasive vegetation among lakes may suggest a causal agent that 

operates for entire lakes (e.g. lake substrate or lake management practice). 

This chapter reviews variance estimation for types of data and situations that are 

commonly encountered in ecological studies.  Major points include that among-cluster variances 

will often be both biased and estimated imprecisely unless the number of clusters is moderate to 

large (20 to possibly as many as 100).  The accuracy and precision concerns described in this 

chapter should be considered when designing monitoring programs and when interpreting 

variance components for scientific and management purposes.   
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APPENDIX 4.  COMMON PROBLEMS AND DIFFICULT GRAY AREAS (with Robert A. 

Gitzen) 

As this chapter documents, variance components estimated from small sample sizes will often be 

characterized by low precision and – depending on the data type and estimator – substantial 

levels of bias.  Investigators need to consider these concerns when using variance estimates from 

small samples for study design.  Often, a simulation approach is useful for evaluating the 

potential magnitude of available estimates, following the same approach as demonstrated in this 

chapter but with sample sizes and other details tailored to the specific situation. The 

bias/precision observed in such simulations can be useful for determining a range of plausible 

values for each variance component; study design options may then be evaluated using multiple 

plausible values rather than that of a single point estimate (see also Chapter 8).  In many cases, 

although absolute results of such design studies may change greatly across the range of plausible 

values, the comparative trade-offs among alternative design options may be relatively robust to 

uncertainties in the variance estimates.  Absent such a finding, further data collection may be 

required.   

 The concern with poorly estimated variance components is especially problematic when 

monitoring program personnel wish to estimate the number of years until power to detect a given 

trend reaches a given level.  The value of 2
years  will often have an overriding influence on power 

to detect temporal trends (e.g., Urquhart et al. 1998), and bias and imprecision associated with 

estimators of 2
years  may lead to biased and imprecise estimates of power to detect trends.  In 

these cases, the simulation approach described in the previous paragraph will be useful.  Also, in 

some cases, suitable long-term data sets conducive to meaningful estimation of 2
years will be 

available, either from the system under investigation or from systems with patterns of variation 
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hypothesized to be similar.  
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Table 1. Estimates of among-year variances, 2

years , from random effects linear models by 

estimation method.  Unless otherwise indicated, numbers of sites, years and observations per 

site-year (n) = 10, 5 and 5, respectively, 2
εs  = 1, 2

sites = 2
years = 0.3, and 2

site-years = 0.15.a  

 

Scenario Attribute 

varied 

2
years estimates by estimation method 

(Monte Carlo standard deviation), % zero estimatesb 

  ANOVA FML REML 

 

Sample size modifications 

1 Years = 3 0.303 (0.345), 0.10 0.207 (0.235), 0.13 0.303 (0.345), 0.10 

2 Years = 5 (reference) 0.285 (0.239), 0.02 0.236 (0.195), 0.02 0.285 (0.239), 0.02 

3 Years = 10 0.298 (0.159), 0.00 0.278 (0.146), 0.00 0.298 (0.159), 0.00 

4 Years = 20 0.297 (0.103), 0.00 0.290 (0.100), 0.00 0.297 (0.103), 0.00 

5 n = 10 0.292 (0.236), 0.01 0.244 (0.193), 0.02 0.292 (0.236), 0.01 

6 sites = 20 0.284 (0.221), 0.01 0.233 (0.179), 0.01 0.284 (0.221), 0.01 

 

Unbalanced data sets 

7 Unbalanced-1c 0.284 (0.308), 0.06 0.228 (0.205), 0.06 0.279 (0.251), 0.05 

8 Unbalanced-2d 0.300 (0.322), 0.06 0.231 (0.221), 0.11 0.293 (0.267), 0.08 

 

Variance component modifications 

9 2
εs  = 0.5 0.286 (0.233), 0.02 0.239 (0.191), 0.02 0.286 (0.233), 0.02 
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Scenario Attribute 

varied 

2
years estimates by estimation method 

(Monte Carlo standard deviation), % zero estimatesb 

  ANOVA FML REML 

10 2
sites  = 1 0.285 (0.239), 0.02 0.251 (0.204), 0.02 0.285 (0.239), 0.02 

11 2
years  = 1 0.954 (0.740), 0.00 0.777 (0.595), 0.00 0.954 (0.740), 0.00 

 

Distributional violations 

12 Uniforme 0.302 (0.201), 0.02 0.251 (0.165), 0.02 0.302 (0.201), 0.02 

13 Uniform, years = 20 0.302 (0.079), 0.00 0.295 (0.077), 0.00 0.302 (0.079), 0.00 

aEstimates represent means of simulation-specific estimates; simulations per scenario = 500; 

‘ANOVA,’ ‘FML’ and ‘REML’ denote analysis of variance (Type III estimation), full maximum 

likelihood and residual maximum likelihood, respectively (see Littell et al. 2006 for 

computational details); negative variance estimates (ANOVA only) were set to zero; model 

convergence proportions for ML and REML = 1.00.  Results were generated using SAS’ linear 

mixed modeling procedure (PROC MIXED; SAS 2009). 

b≤1E-4 units; includes negative estimates (ANOVA only). 

cAll cells filled (in 3 of 5 years, 70% of sites contain only 1 observation). 

dSome cells empty (in 3 of 5 years, 70% of sites contain no observations).  

eRandom effects generated as random uniform random variates with nominal variance.  
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Table 2.  Among-year variance partition coefficient (VPCyear) estimates from random effects 

linear models by estimation method.  Unless otherwise indicated, numbers of sites, years and 

observations per site-year (n) = 10, 5 and 5, respectively, 
2
εs  = 1, 2

sites = 2
years = 0.3, and 2

site-years = 

0.15.a  

 

Scenario Attribute 

Varied 



yearVPC  by estimation method (VPC = 0.17) 

[Mean (Monte Carlo standard deviation), median] 

  ANOVA FML REML 

 

Sample size modifications 

1 Years = 3 0.15 (0.13), 0.12 0.11 (0.10), 0.09 0.15 (0.13), 0.12 

2 Years = 5 (reference) 0.17 (0.09), 0.13 0.16 (0.08), 0.12 0.17 (0.09), 0.13 

3 Years = 10 0.17 (0.07), 0.16 0.16 (0.07), 0.15 0.17 (0.07), 0.16 

4 Years = 20 0.17 (0.05), 0.17 0.17 (0.05), 0.17 0.17 (0.05), 0.17 

5 n = 10 0.16 (0.10), 0.14 0.14 (0.09), 0.12 0.16 (0.10), 0.14 

6 sites = 20 0.15 (0.09), 0.14 0.13 (0.08), 0.12 0.15 (0.09), 0.14 

 

Unbalanced data sets 

7 Unbalanced-1b 0.15 (0.12), 0.12 0.13 (0.10), 0.11 0.15 (0.11), 0.13 

8 Unbalanced-2c 0.15 (0.12), 0.13 0.13 (0.10), 0.11 0.15 (0.12), 0.13 

aSee footnote ‘a,’ Table 1, for analytical details. 

bAll cells filled (in 3 of 5 years, 70% of sites contain only 1 observation). 

cSome cells empty (in 3 of 5 years, 70% of sites contain no observations).   



 
 

 

Table 3.  Among-year variance component, 2
years , estimates on the logit scale from random effects logistic models by estimation 

method.  Unless otherwise indicated, number of sites = 20, number of years = 5, number of Bernoulli observations per site-year (n) = 

5, mean probability on the logit scale ( 00β ) = -2 (i.e., median pjk = 0.12), 2
sites = 2

years = 0.3 and 2
site-years = 0.15.a 

 

Scenario Attribute varied 2
years estimates on logit scale by method 

(Monte Carlo standard deviation) 

  MQL1 PQL1 RPQL1 Laplace MCMC 

 

Sample size modifications 

1 Years = 5 (reference) 0.17 (0.17) 0.19 (0.19) 0.25 (0.24) 0.21 (0.22) 0.33 (0.41) 

2 Years = 10 0.22 (0.16) 0.24 (0.15) 0.27 (0.17) 0.26 (0.17) 0.31 (0.24) 

3 Years = 20 0.25 (0.12) 0.26 (0.11) 0.27 (0.12) 0.28 (0.12) 0.30 (0.14) 

4 n = 10 0.18 (0.16) 0.21 (0.20) 0.26 (0.25) 0.22 (0.22) 0.31 (0.30) 

5 Sites = 40 0.19 (0.15) 0.21 (0.17) 0.27 (0.22) 0.21 (0.19) 0.31 (0.30) 

 

Mean and variance component modifications 
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Scenario Attribute varied 2

years estimates on logit scale by method 

(Monte Carlo standard deviation) 

  MQL1 PQL1 RPQL1 Laplace MCMC 

6 
00β = 0 0.17 (0.13) 0.20 (0.17) 0.26 (0.21) 0.23 (0.19) 0.36 (0.35) 

7 2
sites  = 1 0.16 (0.14) 0.22 (0.21) 0.26 (0.26) 0.23 (0.24) 0.31 (0.34) 

8 2
years  = 1 0.53 (0.44) 0.65 (0.55) 0.84 (0.69) 0.76 (0.68) 1.19 (1.09) 

aEstimates represent means of simulation-specific estimates; methods include marginal quasi-likelihood (MQL1), penalized quasi-

likelihood (PQL1), restricted PQL (RPQL1), Laplacian estimation (Laplace) and Bayesian analysis using Markov chain Monte Carlo 

(MCMC).  MQL, PQL, RPQL and Laplacian estimation was performed using SAS’ GLIMMIX procedure (SAS 2009) while MCMC 

estimation was implemented in WinBugs via the R package R2WinBugs (Lunn et al. 2000, R Development Core Team 2006).  For 

the Bayesian analyses, priors for all variance components ( 2
sites , 2

years , 2
site-years ) were gamma(0.001, 0.001), with means 1 and variances 

1000.  Each Bayesian estimate was obtained using 4000 posterior samples taken from a total of 22,000 iterations (the first 2000 

iterations were used as burn in; samples were obtained every fifth iteration from the remaining 20,000 samples).  Quasi-likelihood 

methods employ first-order Taylor series linearizations; percent model convergence per scenario ≥ 0.92 for QL methods, and 1.00 for 

Laplacian estimation; replicates per scenario = 200.  R, SAS and WinBugs code are available at the volume’s web site.  All models 

presumed p varied as a logit-normal random variable. 
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Table 4.  Among-year variance, 2

years , estimates on the  probability scale from random effects logistic models by estimation method.  

Unless otherwise indicated, number of sites = 20, number of years = 5, number of Bernoulli observations per site-year (n) = 5, mean 

probability on the logit scale ( 00β ) = -2 (i.e., median pjk = 0.12), variances on the logit-scale of 2
sites = 2

years = 0.3 and 2
site-years = 0.15.a 

 

Scenario Attribute varied 2
years estimates on probability scale by method 

(Monte Carlo standard deviation) 

  MQL1 PQL1 RPQL1 Laplace 

 

Sample size modifications 

1 Years = 5 (reference) 0.0029 (0.0033) 0.0029 (0.0033) 0.0036 (0.0036) 0.0027 (0.0035) 

2 Years = 10 0.0039 (0.0032) 0.0036 (0.0028) 0.0039 (0.0030) 0.0036 (0.0029) 

3 Years = 20 0.0042 (0.0023) 0.0036 (0.0017) 0.0037 (0.0020) 0.0038 (0.0023) 

4 n = 10 0.0032 (0.0033) 0.0031 (0.0031) 0.0036 (0.0036) 0.0030 (0.0034) 

5 Sites = 40 0.0033 (0.0031) 0.0031 (0.0029) 0.0038 (0.0033) 0.0029 (0.0029) 
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Scenario Attribute varied 2

years estimates on probability scale by method 

(Monte Carlo standard deviation) 

  MQL1 PQL1 RPQL1 Laplace 

Mean and variance component modifications 

6 
00β = 0 0.0083 (0.0061) 0.0089 (0.0067) 0.0110 (0.0083) 0.0099 (0.0077) 

7 2
sites  = 1 0.0030 (0.0032) 0.0032 (0.0032) 0.0039 (0.0042) 0.0030 (0.0031) 

8 2
years  = 1 0.0113 (0.0013) 0.0099 (0.0087) 0.0130 (0.0115) 0.0110 (0.0112) 

aSee footnote ‘a,’ Table 3, for estimation and design details.  Estimates derive from the alternate or difference method described in 

Appendix 2.  
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Table 5.  Among-year variance partition coefficient, VPCyear, estimates on the probability scale from random effects logistic models 

by estimation method and VPC estimation approach.a 

 

Scenario Attribute varied 
yearVPC estimates on the probability scale by method 

(Monte Carlo standard deviation) 

  MQL1 PQL1 RPQL1 Laplace 

 

Simulation approach 

1 Years = 5 (reference) 0.021 (0.021) 0.021 (0.022) 0.027 (0.025) 0.021 (0.024) 

2 Years = 10 0.027 (0.020) 0.027 (0.019) 0.029 (0.020) 0.028 (0.020) 

3 Years = 20 0.030 (0.016) 0.028 (0.012) 0.029 (0.014) 0.030 (0.016) 

4 n = 10 0.022 (0.020) 0.023 (0.021) 0.027 (0.024) 0.023 (0.023) 

5 Sites = 40 0.023 (0.020) 0.023 (0.020) 0.029 (0.024) 0.022 (0.021) 

6 
00β = 0 0.034 (0.025) 0.036 (0.027) 0.045 (0.034) 0.040 (0.031) 

7 2
sites  = 1 0.018 (0.018) 0.022 (0.020) 0.026 (0.025) 0.021 (0.020) 
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Scenario Attribute varied 

yearVPC estimates on the probability scale by method 

(Monte Carlo standard deviation) 

  MQL1 PQL1 RPQL1 Laplace 

8 2
years  = 1 0.067 (0.058) 0.068 (0.053) 0.086 (0.065) 0.076 (0.066) 

 

Latent variable approach 

1 Years = 5 (reference) 0.043 (0.040) 0.047 (0.044) 0.059 (0.050) 0.048 (0.048) 

2 Years = 10 0.056 (0.036) 0.060 (0.036) 0.065 (0.039) 0.063 (0.039) 

3 Years = 20 0.064 (0.030) 0.064 (0.026) 0.066 (0.028) 0.069 (0.031) 

4 n = 10 0.046 (0.038) 0.052 (0.042) 0.061 (0.048) 0.053 (0.046) 

5 Sites = 40 0.048 (0.038) 0.052 (0.041) 0.064 (0.048) 0.051 (0.044) 

6 
00β = 0 0.045 (0.033) 0.050 (0.037) 0.062 (0.047) 0.056 (0.044) 

7 2
sites  = 1 0.037 (0.032) 0.047 (0.040) 0.055 (0.047) 0.046 (0.041) 

8 2
years  = 1 0.121 (0.087) 0.136 (0.093) 0.166 (0.105) 0.151 (0.108) 

aSee footnote “a,“ Table 3, for estimation and design details.  Estimates under “Simulation approach” derive from the alternate or 

difference method described in Appendix 2. 
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Table 6.  Among-year variance, 2

years , estimates on the log scale from random effects count models by estimation method.  Unless 

otherwise indicated, number of sites = 20, number of years = 5, number of counts per site-year (n) = 5, median count mean (λjk) = 5, 

2
sites = 2

years = 0.3 and 2
site-years = 0.15.a 

Scenario Attribute varied 2
years estimates on the log scale by method 

(Monte Carlo standard deviation), % convergence 

  MQL1 PQL1 RPQL1 Laplace 

 

Negative binomial outcomes (dispersion parameter = 0.5) 

NB1 Years = 5 (reference) 0.21 (0.16), 96 0.21 (0.13), 49 0.21 (0.16), 46 0.23 (0.16), 100 

NB2 Years = 10 0.27 (0.16), 96 0.27 (0.10), 14 0.26 (0.11), 14 0.27 (0.12), 100 

NB3 Years = 20 0.33 (0.20), 93 0.27 (0.09), 29 0.29 (0.09), 27 0.29 (0.09), 100 

NB4 n = 10 0.21 (0.16), 93 0.25 (0.18), 22 0.27 (0.22), 29 0.23 (0.16), 100 

NB5 Sites = 40 0.23 (0.18), 92 0.17 (0.12), 14 0.23 (0.14), 15 0.23 (0.15), 100 

NB6 λjk = 2 0.20 (0.15), 90 0.19 (0.13), 46 0.24 (0.19), 42 0.23 (0.16), 100 

NB7 λjk = 20 0.21 (0.16), 98 0.23 (0.16), 47 0.25 (0.17), 49 0.23 (0.16), 100 
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Scenario Attribute varied 2

years estimates on the log scale by method 

(Monte Carlo standard deviation), % convergence 

  MQL1 PQL1 RPQL1 Laplace 

NB8 2
sites  = 1 0.21 (0.16), 88 0.25 (0.17), 37 0.27 (0.19), 33 0.24 (0.16), 92 

NB9 2
years  = 1 0.60 (0.46), 87 0.66 (0.47), 34 0.77 (0.53), 31 0.62 (0.35), 90 

NB10 Poisson assumption 0.20 (0.15), 87 0.22 (0.14), 77 0.27 (0.20), 73 0.23 (0.16), 100 

 

Poisson outcomes 

P1 Years = 5 (reference) 0.21 (0.17), 99 0.22 (0.15), 71 0.24 (0.17), 67 0.22 (0.15), 100 

P2 Years = 10 0.29 (0.24), 78 0.26 (0.12), 83 0.28 (0.13), 85 0.27 (0.12), 100 

P3 Years = 20 0.32 (0.23), 72 0.28 (0.09), 48 0.29 (0.10), 46 0.29 (0.09), 100 

P4 n = 10 0.22 (0.16), 90 0.23 (0.15), 72 0.27 (0.18), 72 0.23 (0.15), 100 

P5 Sites = 40 0.21 (0.15), 84 0.23 (0.15), 78 0.27 (0.18), 82 0.23 (0.15), 100 

P6 λjk = 2 0.22 (0.17), 94 0.22 (0.15), 66 0.27 (0.19), 64 0.23 (0.16), 100 

P7 λjk = 20 0.22 (0.16), 98 0.23 (0.15), 92 0.27 (0.18), 94 0.23 (0.15), 100 
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Scenario Attribute varied 2

years estimates on the log scale by method 

(Monte Carlo standard deviation), % convergence 

  MQL1 PQL1 RPQL1 Laplace 

P8 2
sites  = 1 0.22 (0.17), 94 0.25 (0.17), 60 0.28 (0.19), 61 0.24 (0.16), 100 

P9 2
years  = 1 0.63 (0.48), 96 0.70 (0.51), 65 0.81 (0.56), 66 0.74 (0.50), 100 

aEstimates represent means of simulation-specific estimates; replicates per scenario = 200.  Methods include marginal quasi-

likelihood (MQL1), penalized quasi-likelihood (PQL1), restricted PQL1 (RPQL1) and Laplacian estimation (Laplace).  Quasi-

likelihood methods employ first-order Taylor series linearizations.  
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